Suppr超能文献

通过模板匹配进行放射治疗靶点的检测与定位。

Detection and localization of radiotherapy targets by template matching.

作者信息

Mostafavi H, Sloutsky A, Jeung A

机构信息

Varian Medical Systems, Inc., Palo Alto, CA 94304, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6023-7. doi: 10.1109/EMBC.2012.6347367.

Abstract

Radio opaque fiducials are implanted in tumors for the purpose of tracking the target motion using X-ray projections during radiation therapy dose delivery. In this paper we describe and evaluate a novel method based on template matching for detection and localization of arbitrary shaped fiducials. Segmentation methods are not adequate for these fiducials because their appearance in online X-ray projections can vary greatly as a function of imaging angle. The algorithm is based on using the planning CT image to generate templates that correspond to the imaging angles of the online images. We demonstrate successful tracking of complex shape fiducials in clinical images of lung and abdomen. We also validate the algorithm by comparing the results with a segmentation approach for one case in which the fiducials could be tracked by both methods. We also show how by adaptive thresholding of the match scores, we can control the false detection rate.

摘要

不透射线的基准标记被植入肿瘤中,目的是在放射治疗剂量输送过程中利用X射线投影跟踪目标运动。在本文中,我们描述并评估了一种基于模板匹配的新颖方法,用于检测和定位任意形状的基准标记。分割方法不适用于这些基准标记,因为它们在在线X射线投影中的外观会因成像角度的不同而有很大变化。该算法基于使用计划CT图像生成与在线图像成像角度相对应的模板。我们展示了在肺部和腹部临床图像中成功跟踪复杂形状基准标记的情况。我们还通过将结果与一种分割方法进行比较来验证该算法,在一个案例中,两种方法都可以跟踪基准标记。我们还展示了如何通过对匹配分数进行自适应阈值处理来控制误检率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验