Fernandez Justin W, Shim Vickie B, Hunter Peter J
Auckland Bioengineering Institute, The University of Auckland, New Zealand. j.fernandez@ auckland.ac.nz
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6616-9. doi: 10.1109/EMBC.2012.6347511.
At the whole organ level, degenerative mechanisms in bone and cartilage are primarily attributed to modifications in loading pattern. Either a change in magnitude or location can initiate a degenerative path. At the micro scale we often see changes in structure such as porosity increase in bone and fibrillation in cartilage. These changes contribute to a reduced structural integrity that weakens the bulk strength of tissue. Finally, at the cell level we have modeling and remodeling pathways that may be disrupted through disease, drugs and altered stimulus from the micro and macro scales. In order to understand this entire process and the roles each level plays a multiscale modeling framework is necessary. This framework can take whole body loadings and pass information through finer spatial scales in order to understand how everyday dynamic movements influence micro and cellular response. In a similar manner, cellular and microstructural processes regulate whole bulk properties and modify whole organ strength. In this study we highlight the multiscale links developed as part of the open-source ontologies for the Physiome Project using the lower limb as an example. We consider the influence of remodeling in (i) anabolic treatments in cortical bone; and (ii) subchondral bone and cartilage degeneration.
在整个器官层面,骨骼和软骨的退化机制主要归因于负荷模式的改变。负荷大小或位置的变化都可能引发退化过程。在微观层面,我们经常会看到结构上的变化,比如骨骼中的孔隙率增加以及软骨中的纤维化。这些变化导致结构完整性降低,从而削弱了组织的整体强度。最后,在细胞层面,我们有建模和重塑途径,这些途径可能会因疾病、药物以及微观和宏观层面刺激的改变而受到干扰。为了理解这一整个过程以及每个层面所起的作用,一个多尺度建模框架是必要的。这个框架可以获取全身负荷,并将信息传递到更精细的空间尺度,以便了解日常动态运动如何影响微观和细胞反应。同样,细胞和微观结构过程调节整体属性并改变整个器官的强度。在本研究中,我们以下肢为例,突出作为生理组计划开源本体一部分所建立的多尺度联系。我们考虑重塑在以下方面的影响:(i)皮质骨的合成代谢治疗;以及(ii)软骨下骨和软骨退变。