Suppr超能文献

使用计算模型研究关节退变:综述

Use of Computational Modeling to Study Joint Degeneration: A Review.

作者信息

Mukherjee Satanik, Nazemi Majid, Jonkers Ilse, Geris Liesbet

机构信息

Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.

Biomechanics Section, KU Leuven, Leuven, Belgium.

出版信息

Front Bioeng Biotechnol. 2020 Feb 28;8:93. doi: 10.3389/fbioe.2020.00093. eCollection 2020.

Abstract

Osteoarthritis (OA), a degenerative joint disease, is the most common chronic condition of the joints, which cannot be prevented effectively. Computational modeling of joint degradation allows to estimate the patient-specific progression of OA, which can aid clinicians to estimate the most suitable time window for surgical intervention in osteoarthritic patients. This paper gives an overview of the different approaches used to model different aspects of joint degeneration, thereby focusing mostly on the knee joint. The paper starts by discussing how OA affects the different components of the joint and how these are accounted for in the models. Subsequently, it discusses the different modeling approaches that can be used to answer questions related to OA etiology, progression and treatment. These models are ordered based on their underlying assumptions and technologies: musculoskeletal models, Finite Element models, (gene) regulatory models, multiscale models and data-driven models (artificial intelligence/machine learning). Finally, it is concluded that in the future, efforts should be made to integrate the different modeling techniques into a more robust computational framework that should not only be efficient to predict OA progression but also easily allow a patient's individualized risk assessment as screening tool for use in clinical practice.

摘要

骨关节炎(OA)是一种退行性关节疾病,是最常见的慢性关节病症,无法得到有效预防。关节退化的计算模型能够估计特定患者的骨关节炎进展情况,这有助于临床医生为骨关节炎患者估算出最适合进行手术干预的时间窗。本文概述了用于对关节退化不同方面进行建模的不同方法,主要聚焦于膝关节。文章开篇讨论了骨关节炎如何影响关节的不同组成部分以及这些在模型中是如何体现的。随后,探讨了可用于回答与骨关节炎病因、进展和治疗相关问题的不同建模方法。这些模型根据其基本假设和技术进行排序:肌肉骨骼模型、有限元模型、(基因)调控模型、多尺度模型和数据驱动模型(人工智能/机器学习)。最后得出结论,未来应努力将不同的建模技术整合到一个更强大的计算框架中,该框架不仅应能高效预测骨关节炎进展,还应便于作为临床实践中的筛查工具对患者进行个性化风险评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11ef/7058554/db36767a1c2a/fbioe-08-00093-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验