Karafyllidis Ioannis G
Democritus University of Thrace, Kimmeria Campus, 67100, Xanthi, Greece.
J Biol Phys. 2017 Jun;43(2):239-245. doi: 10.1007/s10867-017-9449-4. Epub 2017 Apr 4.
The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.
自然光合系统极高的光捕获效率,再加上近期表明光合复合物中存在量子相干能量转移的实验,引发了关于光合作用中是否存在非平凡量子效应的问题。人们已经研究了格罗弗量子搜索、量子行走和纠缠等可能导致这种效率的效应。在这里,我们在不引入非平凡量子效应的情况下解释了近乎单位的光合效率。相反,我们使用非平衡格林函数,一种用于研究纳米导体中输运的介观方法,利用实验推导的激子哈密顿量来计算费纳 - 马修斯 - 奥尔森(FMO)复合物的传输函数。叶绿体天线和反应中心分别扮演输入和输出接触点的角色,与FMO复合物相连。我们表明存在两个传输几乎为单位值的通道。我们的分析还揭示了一种退相驱动的调节机制,该机制在存在变化的退相势的情况下维持效率。