Physics of Biological Systems, Institut Pasteur and CNRS UMR 3525, 28 rue du docteur Roux, 75015 Paris, France.
Phys Rev Lett. 2012 Dec 28;109(26):260603. doi: 10.1103/PhysRevLett.109.260603. Epub 2012 Dec 27.
Particle motion at the microscale is an incessant tug-of-war between thermal fluctuations and applied forces on one side and the strong resistance exerted by fluid viscosity on the other. Friction is so strong that completely neglecting inertia--the overdamped approximation--gives an excellent effective description of the actual particle mechanics. In sharp contrast to this result, here we show that the overdamped approximation dramatically fails when thermodynamic quantities such as the entropy production in the environment are considered, in the presence of temperature gradients. In the limit of vanishingly small, yet finite, inertia, we find that the entropy production is dominated by a contribution that is anomalous, i.e., has no counterpart in the overdamped approximation. This phenomenon, which we call an entropic anomaly, is due to a symmetry breaking that occurs when moving to the small, finite inertia limit. Anomalous entropy production is traced back to futile phase-space cyclic trajectories displaying a fast downgradient sweep followed by a slow upgradient return to the original position.
在微观尺度上,颗粒的运动是一个持续不断的拉锯战,一边是热涨落和施加在颗粒上的力,另一边是流体粘性产生的强大阻力。摩擦力非常强,以至于完全忽略惯性——过阻尼近似——可以对实际的颗粒力学给出极好的有效描述。与此形成鲜明对比的是,在这里我们表明,当考虑环境中的热力学量(如熵产生)时,过阻尼近似在存在温度梯度的情况下会严重失效。在无穷小但有限的惯性极限下,我们发现熵产生主要由一个反常贡献主导,即在过阻尼近似中没有对应的贡献。这种现象我们称之为熵反常,是由于当移动到小的、有限的惯性极限时发生了对称破缺。反常的熵产生可以追溯到无效的相空间循环轨迹,这些轨迹显示了快速向下的扫荡,随后缓慢向上返回原始位置。