Suppr超能文献

具有 Fe4S4 核和 [Sn(n)S(2n+2)](4-)(n = 1, 2, 4) 构筑块的可调谐仿生硫属凝胶用于太阳能燃料催化。

Tunable biomimetic chalcogels with Fe4S4 cores and [Sn(n)S(2n+2)](4-)(n = 1, 2, 4) building blocks for solar fuel catalysis.

机构信息

Department of Chemistry and Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

J Am Chem Soc. 2013 Feb 13;135(6):2330-7. doi: 10.1021/ja311310k. Epub 2013 Jan 31.

Abstract

Biology sustains itself by converting solar energy in a series of reactions between light harvesting components, electron transfer pathways, and redox-active centers. As an artificial system mimicking such solar energy conversion, porous chalcogenide aerogels (chalcogels) encompass the above components into a common architecture. We present here the ability to tune the redox properties of chalcogel frameworks containing biological Fe(4)S(4) clusters. We have investigated the effects of Sn(n)S(2n+2) linking blocks (SnS(4), Sn(2)S(6), Sn(4)S(10)) on the electrochemical and electrocatalytic properties of the chalcogels, as well as on the photophysical properties of incorporated light-harvesting dyes, tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)). The various thiostannate linking blocks do not alter significantly the chalcogel surface area (90-310 m(2)/g) or the local environment around the Fe(4)S(4) clusters as indicated by (57)Fe Mössbauer spectroscopy. However, the varying charge density of the linking blocks greatly affects the reduction potential of the Fe(4)S(4) cluster and the electronic interaction between the clusters. We find that when the Fe(4)S(4) clusters are bridged with the adamantane Sn(4)S(10) linking blocks, the electrochemical reduction of CS(2) and the photochemical production of hydrogen are enhanced. The ability to tune the redox properties of biomimetic chalcogels presents a novel avenue to control the function of multifunctional chalcogels for a wide range of electrochemical or photochemical processes relevant to solar fuels.

摘要

生物通过在一系列光捕获组件、电子转移途径和氧化还原活性中心之间的反应将太阳能转化为自身的能量。作为模拟这种太阳能转化的人工系统,多孔硫属化物气凝胶(chalcogels)将上述组件包含在一个共同的结构中。我们在这里展示了调节包含生物 Fe(4)S(4)簇的硫属化物气凝胶框架的氧化还原性质的能力。我们研究了Sn(n)S(2n+2)连接块(SnS(4), Sn(2)S(6), Sn(4)S(10))对硫属化物气凝胶的电化学和电催化性质以及对所包含的光捕获染料三(2,2'-联吡啶)钌(II)(Ru(bpy)(3)(2+))的光物理性质的影响。各种硫代锡酸盐连接块并没有显著改变硫属化物气凝胶的表面积(90-310 m(2)/g)或 Fe(4)S(4)簇周围的局部环境,这一点可以通过(57)Fe Mössbauer 光谱来证明。然而,连接块的电荷量变化极大地影响了 Fe(4)S(4)簇的还原电位和簇之间的电子相互作用。我们发现,当 Fe(4)S(4)簇由金刚烷Sn(4)S(10)连接块桥接时,CS(2)的电化学还原和光化学制氢的效率都会提高。调节仿生硫属化物气凝胶的氧化还原性质为控制多功能硫属化物气凝胶在一系列与太阳能燃料相关的电化学或光化学过程中的功能提供了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验