Suppr超能文献

一种使用弥散张量成像追踪白质变化的无偏纵向分析框架及其在阿尔茨海默病中的应用。

An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer's disease.

机构信息

Dementia Research Centre, UCL Institute of Neurology, London, UK; Centre for Medical Image Computing (CMIC), University College London, UK.

出版信息

Neuroimage. 2013 May 15;72:153-63. doi: 10.1016/j.neuroimage.2013.01.044. Epub 2013 Jan 28.

Abstract

We introduce a novel image-processing framework for tracking longitudinal changes in white matter microstructure using diffusion tensor imaging (DTI). Charting the trajectory of such temporal changes offers new insight into disease progression but to do so accurately faces a number of challenges. Recent developments have highlighted the importance of processing each subject's data at multiple time points in an unbiased way. In this paper, we aim to highlight a different challenge critical to the processing of longitudinal DTI data, namely the approach to image alignment. Standard approaches in the literature align DTI data by registering the corresponding scalar-valued fractional anisotropy (FA) maps. We propose instead a DTI registration algorithm that leverages full tensor information to drive improved alignment. This proposed pipeline is evaluated against the standard FA-based approach using a DTI dataset from an ongoing study of Alzheimer's disease (AD). The dataset consists of subjects scanned at two time points and at each time point the DTI acquisition consists of two back-to-back repeats in the same scanning session. The repeated scans allow us to evaluate the specificity of each pipeline, using a test-retest design, and assess precision, using bootstrap-based method. The results show that the tensor-based pipeline achieves both higher specificity and precision than the standard FA-based approach. Tensor-based registration for longitudinal processing of DTI data in clinical studies may be of particular value in studies assessing disease progression.

摘要

我们介绍了一种新的图像处理框架,用于使用扩散张量成像(DTI)跟踪白质微观结构的纵向变化。描绘这种时间变化的轨迹为疾病进展提供了新的见解,但要做到这一点准确无误,面临着许多挑战。最近的发展强调了以无偏的方式处理每个受试者在多个时间点的数据的重要性。在本文中,我们旨在强调处理纵向 DTI 数据的另一个关键挑战,即图像配准方法。文献中的标准方法通过对相应的标量值各向异性分数(FA)图进行配准来对齐 DTI 数据。相反,我们提出了一种利用全张量信息来驱动改进配准的 DTI 配准算法。我们使用正在进行的阿尔茨海默病(AD)研究中的 DTI 数据集来评估该流水线与基于 FA 的标准方法。该数据集由在两个时间点扫描的受试者组成,并且在每个时间点,DTI 采集在同一次扫描会话中包含两次背靠背重复。重复扫描使我们能够使用测试 - 再测试设计评估每个管道的特异性,并使用基于引导的方法评估精度。结果表明,基于张量的流水线比基于 FA 的标准方法具有更高的特异性和精度。在临床研究中,用于纵向处理 DTI 数据的基于张量的配准在评估疾病进展的研究中可能具有特殊价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验