Suppr超能文献

中风后运动恢复的预测受益于亚急性广泛网络损伤的测量。

Prediction of post-stroke motor recovery benefits from measures of sub-acute widespread network damages.

作者信息

Rivier Cyprien, Preti Maria Giulia, Nicolo Pierre, Van De Ville Dimitri, Guggisberg Adrian G, Pirondini Elvira

机构信息

Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva 1202, Switzerland.

Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.

出版信息

Brain Commun. 2023 Mar 1;5(2):fcad055. doi: 10.1093/braincomms/fcad055. eCollection 2023.

Abstract

Following a stroke in regions of the brain responsible for motor activity, patients can lose their ability to control parts of their body. Over time, some patients recover almost completely, while others barely recover at all. It is known that lesion volume, initial motor impairment and cortico-spinal tract asymmetry significantly impact motor changes over time. Recent work suggested that disabilities arise not only from focal structural changes but also from widespread alterations in inter-regional connectivity. Models that consider damage to the entire network instead of only local structural alterations lead to a more accurate prediction of patients' recovery. However, assessing white matter connections in stroke patients is challenging and time-consuming. Here, we evaluated in a data set of 37 patients whether we could predict upper extremity motor recovery from brain connectivity measures obtained by using the patient's lesion mask to introduce virtual lesions in 60 healthy streamline tractography connectomes. This indirect estimation of the stroke impact on the whole brain connectome is more readily available than direct measures of structural connectivity obtained with magnetic resonance imaging. We added these measures to benchmark structural features, and we used a ridge regression regularization to predict motor recovery at 3 months post-injury. As hypothesized, accuracy in prediction significantly increased ( = 0.68) as compared to benchmark features ( = 0.38). This improved prediction of recovery could be beneficial to clinical care and might allow for a better choice of intervention.

摘要

在负责运动活动的脑区发生中风后,患者可能会失去控制身体某些部位的能力。随着时间的推移,一些患者几乎完全康复,而另一些患者几乎没有恢复。已知病变体积、初始运动障碍和皮质脊髓束不对称会显著影响运动随时间的变化。最近的研究表明,残疾不仅源于局灶性结构变化,还源于区域间连接的广泛改变。考虑整个网络损伤而非仅局部结构改变的模型能更准确地预测患者的恢复情况。然而,评估中风患者的白质连接具有挑战性且耗时。在此,我们在一个包含37名患者的数据集里进行评估,看是否能从通过使用患者病变掩码在60个健康流线型纤维束成像连接组中引入虚拟病变而获得的脑连接测量值来预测上肢运动恢复情况。这种对中风对全脑连接组影响的间接估计比通过磁共振成像获得的结构连接直接测量更容易实现。我们将这些测量值添加到基准结构特征中,并使用岭回归正则化来预测受伤后3个月的运动恢复情况。正如所假设的,与基准特征( = 0.38)相比,预测准确率显著提高( = 0.68)。这种对恢复情况的更好预测可能有利于临床护理,并可能有助于做出更好的干预选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f691/10016810/3473bed4ac6c/fcad055_ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验