Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.
Drugs. 2013 Feb;73(2):159-77. doi: 10.1007/s40265-013-0013-7.
Avibactam (formerly NXL104, AVE1330A) is a synthetic non-β-lactam, β-lactamase inhibitor that inhibits the activities of Ambler class A and C β-lactamases and some Ambler class D enzymes. This review summarizes the existing data published for ceftazidime-avibactam, including relevant chemistry, mechanisms of action and resistance, microbiology, pharmacokinetics, pharmacodynamics, and efficacy and safety data from animal and human trials. Although not a β-lactam, the chemical structure of avibactam closely resembles portions of the cephem bicyclic ring system, and avibactam has been shown to bond covalently to β-lactamases. Very little is known about the potential for avibactam to select for resistance. The addition of avibactam greatly (4-1024-fold minimum inhibitory concentration [MIC] reduction) improves the activity of ceftazidime versus most species of Enterobacteriaceae depending on the presence or absence of β-lactamase enzyme(s). Against Pseudomonas aeruginosa, the addition of avibactam also improves the activity of ceftazidime (fourfold MIC reduction). Limited data suggest that the addition of avibactam does not improve the activity of ceftazidime versus Acinetobacter species or most anaerobic bacteria (exceptions: Bacteroides fragilis, Clostridium perfringens, Prevotella spp. and Porphyromonas spp.). The pharmacokinetics of avibactam follow a two-compartment model and do not appear to be altered by the co-administration of ceftazidime. The maximum plasma drug concentration (C(max)) and area under the plasma concentration-time curve (AUC) of avibactam increase linearly with doses ranging from 50 mg to 2,000 mg. The mean volume of distribution and half-life of 22 L (0.3 L/kg) and ~2 hours, respectively, are similar to ceftazidime. Like ceftazidime, avibactam is primarily renally excreted, and clearance correlates with creatinine clearance. Pharmacodynamic data suggest that ceftazidime-avibactam is rapidly bactericidal versus β-lactamase-producing Gram-negative bacilli that are not inhibited by ceftazidime alone.Clinical trials to date have reported that ceftazidime-avibactam is as effective as standard carbapenem therapy in complicated intra-abdominal infection and complicated urinary tract infection, including infection caused by cephalosporin-resistant Gram-negative isolates. The safety and tolerability of ceftazidime-avibactam has been reported in three phase I pharmacokinetic studies and two phase II clinical studies. Ceftazidime-avibactam appears to be well tolerated in healthy subjects and hospitalized patients, with few serious drug-related treatment-emergent adverse events reported to date.In conclusion, avibactam serves to broaden the spectrum of ceftazidime versus ß-lactamase-producing Gram-negative bacilli. The exact roles for ceftazidime-avibactam will be defined by efficacy and safety data from further clinical trials. Potential future roles for ceftazidime-avibactam include the treatment of suspected or documented infections caused by resistant Gram-negative-bacilli producing extended-spectrum ß-lactamase (ESBL), Klebsiella pneumoniae carbapenemases (KPCs) and/or AmpC ß-lactamases. In addition, ceftazidime-avibactam may be used in combination (with metronidazole) for suspected polymicrobial infections. Finally, the increased activity of ceftazidime-avibactam versus P. aeruginosa may be of clinical benefit in patients with suspected or documented P. aeruginosa infections.
阿维巴坦(前称 NXL104、AVE1330A)是一种合成的非β-内酰胺类、β-内酰胺酶抑制剂,可抑制 Ambler 类 A 和 C 型β-内酰胺酶以及一些 Ambler 类 D 型酶的活性。本综述总结了已发表的关于头孢他啶-阿维巴坦的现有数据,包括相关化学、作用机制和耐药性、微生物学、药代动力学、药效学以及来自动物和人体试验的疗效和安全性数据。尽管不是β-内酰胺类药物,但阿维巴坦的化学结构与头孢烯双环系统的部分结构非常相似,并且已证明阿维巴坦与β-内酰胺酶发生共价结合。目前对于阿维巴坦潜在耐药性的研究还很少。与头孢他啶相比,阿维巴坦的加入大大(最小抑菌浓度 [MIC] 降低 4-1024 倍)增强了对大多数肠杆菌科细菌的活性,这取决于是否存在β-内酰胺酶。对于铜绿假单胞菌,加入阿维巴坦也可使头孢他啶的活性提高(MIC 降低约 4 倍)。有限的数据表明,与头孢他啶相比,阿维巴坦对不动杆菌属或大多数厌氧菌(例外:脆弱拟杆菌、产气荚膜梭菌、普雷沃菌属和卟啉单胞菌属)的活性没有改善。阿维巴坦的药代动力学呈二室模型,与头孢他啶联合给药时似乎不会改变。阿维巴坦的最大血浆药物浓度(C(max))和血浆浓度-时间曲线下面积(AUC)随剂量从 50mg 至 2000mg 呈线性增加。其平均分布容积和半衰期分别为 22L(约 0.3L/kg)和 2 小时,与头孢他啶相似。与头孢他啶一样,阿维巴坦主要通过肾脏排泄,清除率与肌酐清除率相关。药效动力学数据表明,头孢他啶-阿维巴坦对不被头孢他啶单独抑制的产β-内酰胺酶的革兰氏阴性杆菌具有快速杀菌作用。迄今为止的临床试验报告称,头孢他啶-阿维巴坦在复杂性腹腔内感染和复杂性尿路感染中的疗效与标准碳青霉烯类治疗相当,包括对头孢菌素耐药的革兰氏阴性分离株引起的感染。在三项 I 期药代动力学研究和两项 II 期临床研究中报道了头孢他啶-阿维巴坦的安全性和耐受性。头孢他啶-阿维巴坦在健康受试者和住院患者中耐受性良好,迄今为止报告的与药物相关的严重不良事件很少。总之,阿维巴坦可扩大头孢他啶对产β-内酰胺酶的革兰氏阴性杆菌的作用范围。头孢他啶-阿维巴坦的确切作用将通过进一步临床试验的疗效和安全性数据来确定。头孢他啶-阿维巴坦的潜在未来作用包括治疗由产超广谱β-内酰胺酶(ESBL)、肺炎克雷伯菌碳青霉烯酶(KPCs)和/或 AmpC β-内酰胺酶的耐药革兰氏阴性菌引起的疑似或确诊感染。此外,头孢他啶-阿维巴坦可能与甲硝唑联合用于疑似混合感染。最后,头孢他啶-阿维巴坦对铜绿假单胞菌的活性增强可能对疑似或确诊铜绿假单胞菌感染的患者具有临床益处。