Departments of Internal Medicine and Biochemistry, Veterans Affairs Medical Center, Salt Lake City, UT 84132, USA.
Endocrinology. 2013 Mar;154(3):1029-38. doi: 10.1210/en.2012-1445. Epub 2013 Jan 31.
Mitochondrial dysfunction is both a contributing mechanism and complication of diabetes, and oxidative stress contributes to that dysfunction. Mitochondrial manganese-superoxide dismutase (MnSOD) is a metalloenzyme that provides antioxidant protection. We have previously shown in a mouse model of hereditary iron overload that cytosolic iron levels affected mitochondrial manganese availability, MnSOD activity, and insulin secretion. We therefore sought to determine the metallation status of MnSOD in wild-type mice and whether altering that status affected β-cell function. 129/SvEVTac mice given supplemental manganese exhibited a 73% increase in hepatic MnSOD activity and increased metallation of MnSOD. To determine whether manganese supplementation offered glucose homeostasis under a situation of β-cell stress, we challenged C57BL/6J mice, which are more susceptible to diet-induced diabetes, with a high-fat diet for 12 weeks. Manganese was supplemented or not for the final 8 weeks on that diet, after which we examined glucose tolerance and the function of isolated islets. Liver mitochondria from manganese-injected C57BL/6J mice had similar increases in MnSOD activity (81%) and metallation as were seen in 129/SvEVTac mice. The manganese-treated group fed high fat had improved glucose tolerance (24% decrease in fasting glucose and 41% decrease in area under the glucose curve), comparable with mice on normal chow and increased serum insulin levels. Isolated islets from the manganese-treated group exhibited improved insulin secretion, decreased lipid peroxidation, and improved mitochondrial function. In conclusion, MnSOD metallation and activity can be augmented with manganese supplementation in normal mice on normal chow, and manganese treatment can increase insulin secretion to improve glucose tolerance under conditions of dietary stress.
线粒体功能障碍既是糖尿病的发病机制之一,也是其并发症,而氧化应激是导致这种功能障碍的原因之一。线粒体锰超氧化物歧化酶(MnSOD)是一种金属酶,可提供抗氧化保护。我们之前在遗传性铁过载的小鼠模型中发现,细胞质铁水平会影响线粒体锰的可用性、MnSOD 活性和胰岛素分泌。因此,我们试图确定野生型小鼠中 MnSOD 的金属化状态,以及改变这种状态是否会影响β细胞功能。给予补充锰的 129/SvEVTac 小鼠肝 MnSOD 活性增加 73%,MnSOD 的金属化程度增加。为了确定在β细胞应激情况下补充锰是否可以维持血糖稳态,我们用高脂肪饮食对更易患饮食诱导型糖尿病的 C57BL/6J 小鼠进行了 12 周的挑战。在该饮食的最后 8 周补充或不补充锰,然后检查葡萄糖耐量和分离胰岛的功能。从注射锰的 C57BL/6J 小鼠的肝线粒体中,MnSOD 活性(增加 81%)和金属化程度与 129/SvEVTac 小鼠相似。高脂肪饮食加锰处理组的小鼠葡萄糖耐量改善(空腹血糖降低 24%,血糖曲线下面积降低 41%),与正常饮食组的小鼠相当,且血清胰岛素水平升高。从锰处理组分离的胰岛表现出改善的胰岛素分泌、减少的脂质过氧化和改善的线粒体功能。总之,在正常饮食的正常小鼠中,MnSOD 的金属化和活性可以通过补充锰来增强,并且在饮食应激条件下,锰处理可以增加胰岛素分泌来改善葡萄糖耐量。