Larosche Isabelle, Choumar Amal, Fromenty Bernard, Lettéron Philippe, Abbey-Toby Adjé, Van Remmen Holly, Epstein Charles J, Richardson Arlan, Feldmann Gérard, Pessayre Dominique, Mansouri Abdellah
INSERM, U773, Centre de Recherche Biomédicale Bichat Beaujon (CRB3), Equipe Mitochondries et Foie, F75018, Paris, France.
Toxicol Appl Pharmacol. 2009 Feb 1;234(3):326-38. doi: 10.1016/j.taap.2008.11.004. Epub 2008 Nov 20.
Alcohol consumption increases reactive oxygen species formation and lipid peroxidation, whose products can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. A possible role of manganese superoxide dismutase (MnSOD) on these effects has not been investigated. To test whether MnSOD overexpression modulates alcohol-induced mitochondrial alterations, we added ethanol to the drinking water of transgenic MnSOD-overexpressing (TgMnSOD) mice and their wild type (WT) littermates for 7 weeks. In TgMnSOD mice, alcohol administration further increased the activity of MnSOD, but decreased cytosolic glutathione as well as cytosolic glutathione peroxidase activity and peroxisomal catalase activity. Whereas ethanol increased cytochrome P-450 2E1 and mitochondrial ROS generation in both WT and TgMnSOD mice, hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls were only increased in ethanol-treated TgMnSOD mice but not in WT mice. In ethanol-fed TgMnSOD mice, but not ethanol-fed WT mice, mtDNA was depleted, and mtDNA lesions blocked the progress of polymerases. The iron chelator, DFO prevented hepatic iron accumulation, lipid peroxidation, protein carbonyl formation and mtDNA depletion in alcohol-treated TgMnSOD mice. Alcohol markedly decreased the activities of complexes I, IV and V of the respiratory chain in TgMnSOD, with absent or lesser effects in WT mice. There was no inflammation, apoptosis or necrosis, and steatosis was similar in ethanol-treated WT and TgMnSOD mice. In conclusion, prolonged alcohol administration selectively triggers iron accumulation, lipid peroxidation, respiratory complex I protein carbonylation, mtDNA lesions blocking the progress of polymerases, mtDNA depletion and respiratory complex dysfunction in TgMnSOD mice but not in WT mice.
饮酒会增加活性氧的形成和脂质过氧化,其产物会损害线粒体DNA(mtDNA)并改变线粒体功能。锰超氧化物歧化酶(MnSOD)在这些影响中可能发挥的作用尚未得到研究。为了测试MnSOD过表达是否能调节酒精诱导的线粒体改变,我们在转基因MnSOD过表达(TgMnSOD)小鼠及其野生型(WT)同窝小鼠的饮用水中添加乙醇,持续7周。在TgMnSOD小鼠中,给予酒精进一步增加了MnSOD的活性,但降低了胞质谷胱甘肽以及胞质谷胱甘肽过氧化物酶活性和过氧化物酶体过氧化氢酶活性。虽然乙醇在WT和TgMnSOD小鼠中均增加了细胞色素P-450 2E1和线粒体ROS的产生,但肝铁、脂质过氧化产物和呼吸链复合体I蛋白羰基仅在乙醇处理的TgMnSOD小鼠中增加,而在WT小鼠中未增加。在喂食乙醇的TgMnSOD小鼠而非喂食乙醇的WT小鼠中,mtDNA耗竭,并且mtDNA损伤阻碍了聚合酶的进程。铁螯合剂DFO可预防酒精处理的TgMnSOD小鼠肝铁积累、脂质过氧化、蛋白羰基形成和mtDNA耗竭。酒精显著降低了TgMnSOD小鼠呼吸链复合体I、IV和V的活性,在WT小鼠中则没有或只有较小影响。在乙醇处理的WT和TgMnSOD小鼠中均没有炎症、凋亡或坏死,并且脂肪变性相似。总之,长期给予酒精会选择性地引发TgMnSOD小鼠而非WT小鼠的铁积累、脂质过氧化、呼吸链复合体I蛋白羰基化、阻碍聚合酶进程的mtDNA损伤、mtDNA耗竭和呼吸链复合体功能障碍。