Suppr超能文献

模拟谷氨酸-谷氨酰胺神经递质循环。

Modeling the glutamate-glutamine neurotransmitter cycle.

作者信息

Shen Jun

机构信息

Molecular Imaging Branch, National Institute of Mental Health Bethesda, MD, USA.

出版信息

Front Neuroenergetics. 2013 Jan 28;5:1. doi: 10.3389/fnene.2013.00001. eCollection 2013.

Abstract

Glutamate is the principal excitatory neurotransmitter in brain. Although it is rapidly synthesized from glucose in neural tissues the biochemical processes for replenishing the neurotransmitter glutamate after glutamate release involve the glutamate-glutamine cycle. Numerous in vivo(13)C magnetic resonance spectroscopy (MRS) experiments since 1994 by different laboratories have consistently concluded: (1) the glutamate-glutamine cycle is a major metabolic pathway with a flux rate substantially greater than those suggested by early studies of cell cultures and brain slices; (2) the glutamate-glutamine cycle is coupled to a large portion of the total energy demand of brain function. The dual roles of glutamate as the principal neurotransmitter in the CNS and as a key metabolite linking carbon and nitrogen metabolism make it possible to probe glutamate neurotransmitter cycling using MRS by measuring the labeling kinetics of glutamate and glutamine. At the same time, comparing to non-amino acid neurotransmitters, the added complexity makes it more challenging to quantitatively separate neurotransmission events from metabolism. Over the past few years our understanding of the neuronal-astroglial two-compartment metabolic model of the glutamate-glutamine cycle has been greatly advanced. In particular, the importance of isotopic dilution of glutamine in determining the glutamate-glutamine cycling rate using [1-(13)C] or [1,6-(13)C(2)] glucose has been demonstrated and reproduced by different laboratories. In this article, recent developments in the two-compartment modeling of the glutamate-glutamine cycle are reviewed. In particular, the effects of isotopic dilution of glutamine on various labeling strategies for determining the glutamate-glutamine cycling rate are analyzed. Experimental strategies for measuring the glutamate-glutamine cycling flux that are insensitive to isotopic dilution of glutamine are also suggested.

摘要

谷氨酸是大脑中主要的兴奋性神经递质。尽管它在神经组织中可由葡萄糖快速合成,但谷氨酸释放后补充神经递质谷氨酸的生化过程涉及谷氨酸-谷氨酰胺循环。自1994年以来,不同实验室进行的大量体内碳-13磁共振波谱(MRS)实验一致得出结论:(1)谷氨酸-谷氨酰胺循环是一条主要的代谢途径,其通量速率远高于早期细胞培养和脑片研究提出的速率;(2)谷氨酸-谷氨酰胺循环与大脑功能的大部分总能量需求相关联。谷氨酸在中枢神经系统中作为主要神经递质以及作为连接碳和氮代谢的关键代谢物的双重作用,使得通过测量谷氨酸和谷氨酰胺的标记动力学,利用MRS探测谷氨酸神经递质循环成为可能。同时,与非氨基酸神经递质相比,这种增加的复杂性使得从代谢中定量分离神经传递事件更具挑战性。在过去几年中,我们对谷氨酸-谷氨酰胺循环的神经元-星形胶质细胞双室代谢模型的理解有了很大进展。特别是,不同实验室已经证明并重现了谷氨酰胺的同位素稀释在使用[1-(13)C]或[1,6-(13)C2]葡萄糖确定谷氨酸-谷氨酰胺循环速率方面的重要性。在本文中,回顾了谷氨酸-谷氨酰胺循环双室模型的最新进展。特别是,分析了谷氨酰胺的同位素稀释对确定谷氨酸-谷氨酰胺循环速率的各种标记策略的影响。还提出了对谷氨酰胺同位素稀释不敏感的测量谷氨酸-谷氨酰胺循环通量的实验策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a17/3556573/66c571c9e0b0/fnene-05-00001-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验