Suppr超能文献

具有不可靠突触的递归神经元网络中的种群率编码。

Population rate coding in recurrent neuronal networks with unreliable synapses.

机构信息

School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, 610054 People's Republic of China ; Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0411 Japan.

出版信息

Cogn Neurodyn. 2012 Feb;6(1):75-87. doi: 10.1007/s11571-011-9181-x. Epub 2011 Nov 18.

Abstract

Neuron transmits spikes to postsynaptic neurons through synapses. Experimental observations indicated that the communication between neurons is unreliable. However most modelling and computational studies considered deterministic synaptic interaction model. In this paper, we investigate the population rate coding in an all-to-all coupled recurrent neuronal network consisting of both excitatory and inhibitory neurons connected with unreliable synapses. We use a stochastic on-off process to model the unreliable synaptic transmission. We find that synapses with suitable successful transmission probability can enhance the encoding performance in the case of weak noise; while in the case of strong noise, the synaptic interactions reduce the encoding performance. We also show that several important synaptic parameters, such as the excitatory synaptic strength, the relative strength of inhibitory and excitatory synapses, as well as the synaptic time constant, have significant effects on the performance of the population rate coding. Further simulations indicate that the encoding dynamics of our considered network cannot be simply determined by the average amount of received neurotransmitter for each neuron in a time instant. Moreover, we compare our results with those obtained in the corresponding random neuronal networks. Our numerical results demonstrate that the network randomness has the similar qualitative effect as the synaptic unreliability but not completely equivalent in quantity.

摘要

神经元通过突触将尖峰传递到突触后神经元。实验观察表明,神经元之间的通讯是不可靠的。然而,大多数建模和计算研究都考虑了确定性突触相互作用模型。在本文中,我们研究了由兴奋性和抑制性神经元组成的全连接递归神经元网络的群体率编码,这些神经元通过不可靠的突触连接。我们使用随机开-关过程来模拟不可靠的突触传递。我们发现,具有适当成功传递概率的突触可以在弱噪声情况下增强编码性能;而在强噪声情况下,突触相互作用会降低编码性能。我们还表明,几个重要的突触参数,如兴奋性突触强度、抑制性和兴奋性突触的相对强度以及突触时间常数,对群体率编码的性能有显著影响。进一步的模拟表明,我们所考虑的网络的编码动力学不能简单地由每个神经元在一个时间点接收到的神经递质的平均量来决定。此外,我们将我们的结果与相应的随机神经元网络的结果进行了比较。我们的数值结果表明,网络随机性具有与突触不可靠性类似的定性效应,但在数量上并不完全等同。

相似文献

1
Population rate coding in recurrent neuronal networks with unreliable synapses.
Cogn Neurodyn. 2012 Feb;6(1):75-87. doi: 10.1007/s11571-011-9181-x. Epub 2011 Nov 18.
2
Signal propagation in feedforward neuronal networks with unreliable synapses.
J Comput Neurosci. 2011 Jun;30(3):567-87. doi: 10.1007/s10827-010-0279-7. Epub 2010 Sep 30.
3
Stochastic resonance in Hodgkin-Huxley neuron induced by unreliable synaptic transmission.
J Theor Biol. 2012 Sep 7;308:105-14. doi: 10.1016/j.jtbi.2012.05.034. Epub 2012 Jun 9.
4
Impact of synaptic unreliability on the information transmitted by spiking neurons.
J Neurophysiol. 1998 Mar;79(3):1219-29. doi: 10.1152/jn.1998.79.3.1219.
5
Synaptic connectivity in cultured hypothalamic neuronal networks.
J Neurophysiol. 1997 Jun;77(6):3218-25. doi: 10.1152/jn.1997.77.6.3218.
6
Inhibitory control in neuronal networks relies on the extracellular matrix integrity.
Cell Mol Life Sci. 2021 Jul;78(14):5647-5663. doi: 10.1007/s00018-021-03861-3. Epub 2021 Jun 15.
7
Experimental analysis and computational modeling of interburst intervals in spontaneous activity of cortical neuronal culture.
Biol Cybern. 2011 Oct;105(3-4):197-210. doi: 10.1007/s00422-011-0457-3. Epub 2011 Oct 27.
9
Efficient Coding and Energy Efficiency Are Promoted by Balanced Excitatory and Inhibitory Synaptic Currents in Neuronal Network.
Front Cell Neurosci. 2018 May 3;12:123. doi: 10.3389/fncel.2018.00123. eCollection 2018.

引用本文的文献

2
Induction and propagation of transient synchronous activity in neural networks endowed with short-term plasticity.
Cogn Neurodyn. 2021 Feb;15(1):53-64. doi: 10.1007/s11571-020-09578-6. Epub 2020 Mar 17.
3
Energy expenditure computation of a single bursting neuron.
Cogn Neurodyn. 2019 Feb;13(1):75-87. doi: 10.1007/s11571-018-9503-3. Epub 2018 Sep 3.
4
Global asymptotic stability of complex-valued neural networks with additive time-varying delays.
Cogn Neurodyn. 2017 Jun;11(3):293-306. doi: 10.1007/s11571-017-9429-1. Epub 2017 Mar 18.
5
Stability analysis of memristor-based fractional-order neural networks with different memductance functions.
Cogn Neurodyn. 2015 Apr;9(2):145-77. doi: 10.1007/s11571-014-9312-2. Epub 2014 Oct 9.

本文引用的文献

1
The structure of the nervous system of the nematode Caenorhabditis elegans.
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
2
Signal propagation in feedforward neuronal networks with unreliable synapses.
J Comput Neurosci. 2011 Jun;30(3):567-87. doi: 10.1007/s10827-010-0279-7. Epub 2010 Sep 30.
3
Synchronization of the small-world neuronal network with unreliable synapses.
Phys Biol. 2010 Sep 20;7(3):036010. doi: 10.1088/1478-3975/7/3/036010.
5
Self-sustained irregular activity in 2-D small-world networks of excitatory and inhibitory neurons.
IEEE Trans Neural Netw. 2010 Jun;21(6):895-905. doi: 10.1109/TNN.2010.2044419. Epub 2010 Apr 12.
6
Information encoding in an oscillatory network.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 1):061910. doi: 10.1103/PhysRevE.79.061910. Epub 2009 Jun 9.
7
Stochastic and coherence resonance in feed-forward-loop neuronal network motifs.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051921. doi: 10.1103/PhysRevE.79.051921. Epub 2009 May 27.
9
Dynamics of recurrent neural networks with delayed unreliable synapses: metastable clustering.
J Comput Neurosci. 2009 Aug;27(1):65-80. doi: 10.1007/s10827-008-0127-1. Epub 2008 Dec 10.
10
Maximum memory capacity on neural networks with short-term synaptic depression and facilitation.
Neural Comput. 2009 Mar;21(3):851-71. doi: 10.1162/neco.2008.02-08-719.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验