Suppr超能文献

用于具有真实突触动力学的神经网络大规模建模的种群密度方法:将维度降低到合适规模。

Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: cutting the dimension down to size.

作者信息

Haskell E, Nykamp D Q, Tranchina D

机构信息

Courant Institute of Mathematical Sciences, New York University, NY 10012, USA.

出版信息

Network. 2001 May;12(2):141-74.

Abstract

Population density methods provide promising time-saving alternatives to direct Monte Carlo simulations of neuronal network activity, in which one tracks the state of thousands of individual neurons and synapses. A population density method has been found to be roughly a hundred times faster than direct simulation for various test networks of integrate-and-fire model neurons with instantaneous excitatory and inhibitory post-synaptic conductances. In this method, neurons are grouped into large populations of similar neurons. For each population, one calculates the evolution of a probability density function (PDF) which describes the distribution of neurons over state space. The population firing rate is then given by the total flux of probability across the threshold voltage for firing an action potential. Extending the method beyond instantaneous synapses is necessary for obtaining accurate results, because synaptic kinetics play an important role in network dynamics. Embellishments incorporating more realistic synaptic kinetics for the underlying neuron model increase the dimension of the PDF, which was one-dimensional in the instantaneous synapse case. This increase in dimension causes a substantial increase in computation time to find the exact PDF, decreasing the computational speed advantage of the population density method over direct Monte Carlo simulation. We report here on a one-dimensional model of the PDF for neurons with arbitrary synaptic kinetics. The method is more accurate than the mean-field method in the steady state, where the mean-field approximation works best, and also under dynamic-stimulus conditions. The method is much faster than direct simulations. Limitations of the method are demonstrated, and possible improvements are discussed.

摘要

群体密度方法为神经网络活动的直接蒙特卡罗模拟提供了有前景的节省时间的替代方案,在直接蒙特卡罗模拟中,人们追踪数千个单个神经元和突触的状态。对于具有瞬时兴奋性和抑制性突触后电导的积分发放模型神经元的各种测试网络,已发现一种群体密度方法比直接模拟快约一百倍。在这种方法中,神经元被分组为大量相似的神经元群体。对于每个群体,计算一个概率密度函数(PDF)的演化,该函数描述神经元在状态空间中的分布。然后,群体发放率由跨越动作电位发放阈值电压的概率总通量给出。将该方法扩展到瞬时突触之外对于获得准确结果是必要的,因为突触动力学在网络动态中起着重要作用。为基础神经元模型纳入更现实的突触动力学的改进增加了PDF的维度,在瞬时突触情况下PDF是一维的。维度的这种增加导致找到精确PDF的计算时间大幅增加,降低了群体密度方法相对于直接蒙特卡罗模拟的计算速度优势。我们在此报告一种具有任意突触动力学的神经元PDF的一维模型。该方法在稳态下比平均场方法更准确,在平均场近似效果最佳的稳态下以及动态刺激条件下也是如此。该方法比直接模拟快得多。展示了该方法的局限性,并讨论了可能的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验