Flacco N, Segura V, Perez-Aso M, Estrada S, Seller J F, Jiménez-Altayó F, Noguera M A, D'Ocon P, Vila E, Ivorra M D
Departament de Farmacologia, Facultat de Farmacia, Universitat de Valencia, Burjassot, Spain.
Br J Pharmacol. 2013 May;169(2):413-25. doi: 10.1111/bph.12121.
To analyse the relative contribution of β1 -, β2 - and β3 -adrenoceptors (Adrb) to vasodilatation in conductance and resistance vessels, assessing the role of cAMP and/or NO/cGMP signalling pathways.
Rat mesenteric resistance artery (MRA) and aorta were used to analyse the Adrb expression by real-time-PCR and immunohistochemistry, and for the pharmacological characterization of Adrb-mediated activity by wire myography and tissue nucleotide accumulation.
The mRNAs and protein for all Adrb were identified in endothelium and/or smooth muscle cells (SMCs) in both vessels. In MRA, Adrb1 signalled through cAMP, Adrb3 through both cAMP and cGMP, but Adrb2, did not activate nucleotide formation; isoprenaline relaxation was inhibited by propranolol (β1 , β2 ), CGP20712A (β1 ), and SQ22536 (adenylyl cyclase inhibitor), but not by ICI118,551 (β2 ), SR59230A (β3 ), ODQ (soluble guanylyl cyclase inhibitor), L-NAME or endothelium removal. In aorta, Adrb1 signalled through cAMP, while β2 - and β3 -subtypes through cGMP; isoprenaline relaxation was inhibited by propranolol, ICI118,551, ODQ, L-NAME, and to a lesser extent, by endothelium removal. CL316243 (β3 -agonist) relaxed aorta, but not MRA.
Despite all three Adrb subtypes being found in both vessels, Adrb1, located in SMCs and acting through the adenylyl cyclase/cAMP pathway, are primarily responsible for vasodilatation in MRA. However, Adrb-mediated vasodilatation in aorta is driven by endothelial Adrb2 and Adrb3, but also by the Adrb2 present in SMCs, and is coupled to the NO/cGMP pathway. These results could help to understand the different physiological roles played by Adrb signalling in regulating conductance and resistance vessels.
分析β1-、β2-和β3-肾上腺素能受体(Adrb)对传导血管和阻力血管舒张的相对贡献,评估环磷酸腺苷(cAMP)和/或一氧化氮(NO)/环磷酸鸟苷(cGMP)信号通路的作用。
采用大鼠肠系膜阻力动脉(MRA)和主动脉,通过实时聚合酶链反应(PCR)和免疫组织化学分析Adrb的表达,并通过线肌描记法和组织核苷酸积累对Adrb介导的活性进行药理学特征分析。
在两种血管的内皮细胞和/或平滑肌细胞(SMC)中均鉴定出所有Adrb的信使核糖核酸(mRNA)和蛋白质。在MRA中,Adrb1通过cAMP信号传导,Adrb3通过cAMP和cGMP信号传导,但Adrb2不激活核苷酸形成;异丙肾上腺素舒张作用被普萘洛尔(β1、β2)、CGP20712A(β1)和SQ22536(腺苷酸环化酶抑制剂)抑制,但不被ICI118,551(β2)、SR59230A(β3)、ODQ(可溶性鸟苷酸环化酶抑制剂)、L-精氨酸甲酯(L-NAME)或去除内皮抑制。在主动脉中,Adrb1通过cAMP信号传导,而β2-和β3-亚型通过cGMP信号传导;异丙肾上腺素舒张作用被普萘洛尔、ICI118,551、ODQ、L-NAME抑制,去除内皮的抑制作用较小。CL316243(β3-激动剂)使主动脉舒张,但不使MRA舒张。
尽管在两种血管中均发现了所有三种Adrb亚型,但位于SMC中并通过腺苷酸环化酶/cAMP途径发挥作用的Adrb1主要负责MRA的舒张。然而,主动脉中Adrb介导的舒张由内皮Adrb2和Adrb3驱动,也由SMC中存在的Adrb2驱动,并与NO/cGMP途径偶联。这些结果有助于理解Adrb信号在调节传导血管和阻力血管中所起的不同生理作用。