European Molecular Biology Laboratory (EMBL) European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
Cell. 2013 Jan 31;152(3):453-66. doi: 10.1016/j.cell.2012.12.023.
There are ~650,000 Alu elements in transcribed regions of the human genome. These elements contain cryptic splice sites, so they are in constant danger of aberrant incorporation into mature transcripts. Despite posing a major threat to transcriptome integrity, little is known about the molecular mechanisms preventing their inclusion. Here, we present a mechanism for protecting the human transcriptome from the aberrant exonization of transposable elements. Quantitative iCLIP data show that the RNA-binding protein hnRNP C competes with the splicing factor U2AF65 at many genuine and cryptic splice sites. Loss of hnRNP C leads to formation of previously suppressed Alu exons, which severely disrupt transcript function. Minigene experiments explain disease-associated mutations in Alu elements that hamper hnRNP C binding. Thus, by preventing U2AF65 binding to Alu elements, hnRNP C plays a critical role as a genome-wide sentinel protecting the transcriptome. The findings have important implications for human evolution and disease.
人类基因组转录区域约有 65 万个 Alu 元件。这些元件包含隐秘的剪接位点,因此它们不断面临异常掺入成熟转录本的危险。尽管这些元件对转录组完整性构成了重大威胁,但人们对防止其掺入的分子机制知之甚少。在这里,我们提出了一种保护人类转录组免受转座元件异常外显子化的机制。定量 iCLIP 数据显示,RNA 结合蛋白 hnRNP C 在许多真实和隐秘的剪接位点与剪接因子 U2AF65 竞争。hnRNP C 的缺失导致先前受抑制的 Alu 外显子的形成,这严重破坏了转录本的功能。最小基因实验解释了阻碍 hnRNP C 结合的 Alu 元件中的疾病相关突变。因此,hnRNP C 通过防止 U2AF65 与 Alu 元件结合,作为一种全基因组的哨兵,发挥着保护转录组的关键作用。这些发现对人类进化和疾病具有重要意义。