Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n 4200-465 Porto, Portugal.
Comput Biol Med. 2013 May;43(4):248-58. doi: 10.1016/j.compbiomed.2012.12.012. Epub 2013 Jan 30.
The segmentation of pelvic structures in magnetic resonance (MR) images of the female pelvic cavity is a challenging task. This paper proposes the use of three novel geometric deformable models to segment the bladder, vagina and rectum in axial MR images. The different imaging appearances and prior shape knowledge are combined into a level set framework as segmentation cues. The movements of the contours are coupled with each other based on interactive information, and the organ boundaries can be segmented simultaneously. With the region-based external forces defined, the proposed algorithms are robust against noise and partial volume effect.
在女性盆腔磁共振(MR)图像中,骨盆结构的分割是一项具有挑战性的任务。本文提出了三种新的几何变形模型,用于分割轴向 MR 图像中的膀胱、阴道和直肠。不同的成像外观和先验形状知识被组合成一个水平集框架作为分割线索。基于交互信息,轮廓的运动相互耦合,器官边界可以同时分割。通过定义基于区域的外部力,所提出的算法对噪声和部分容积效应具有鲁棒性。