Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, PO Box 9101 (internal post 224), Nijmegen, 6500 HB, The Netherlands.
BMC Genomics. 2013 Feb 1;14:74. doi: 10.1186/1471-2164-14-74.
Tuberculosis (TB) continues to cause a high toll of disease and death among children worldwide. The diagnosis of childhood TB is challenged by the paucibacillary nature of the disease and the difficulties in obtaining specimens. Whereas scientific and clinical research efforts to develop novel diagnostic tools have focused on TB in adults, childhood TB has been relatively neglected. Blood transcriptional profiling has improved our understanding of disease pathogenesis of adult TB and may offer future leads for diagnosis and treatment. No studies applying gene expression profiling of children with TB have been published so far.
We identified a 116-gene signature set that showed an average prediction error of 11% for TB vs. latent TB infection (LTBI) and for TB vs. LTBI vs. healthy controls (HC) in our dataset. A minimal gene set of only 9 genes showed the same prediction error of 11% for TB vs. LTBI in our dataset. Furthermore, this minimal set showed a significant discriminatory value for TB vs. LTBI for all previously published adult studies using whole blood gene expression, with average prediction errors between 17% and 23%. In order to identify a robust representative gene set that would perform well in populations of different genetic backgrounds, we selected ten genes that were highly discriminative between TB, LTBI and HC in all literature datasets as well as in our dataset. Functional annotation of these genes highlights a possible role for genes involved in calcium signaling and calcium metabolism as biomarkers for active TB. These ten genes were validated by quantitative real-time polymerase chain reaction in an additional cohort of 54 Warao Amerindian children with LTBI, HC and non-TB pneumonia. Decision tree analysis indicated that five of the ten genes were sufficient to classify 78% of the TB cases correctly with no LTBI subjects wrongly classified as TB (100% specificity).
Our data justify the further exploration of our signature set as biomarkers for potential childhood TB diagnosis. We show that, as the identification of different biomarkers in ethnically distinct cohorts is apparent, it is important to cross-validate newly identified markers in all available cohorts.
结核病(TB)仍然在全球范围内导致大量儿童患病和死亡。由于疾病的菌载量低,以及获取标本的困难,儿童结核病的诊断具有挑战性。虽然科学界和临床研究致力于开发新的诊断工具,但主要集中在成人结核病上,而儿童结核病相对被忽视。血液转录谱分析提高了我们对成人结核病发病机制的理解,并且可能为诊断和治疗提供新的线索。目前还没有发表关于儿童结核病基因表达谱分析的研究。
我们确定了一个 116 个基因特征集,在我们的数据集中心肌炎与 TB 相比,平均预测错误为 11%;TB 与 LTBI 相比,平均预测错误为 11%;TB 与 LTBI 相比,平均预测错误为 11%。在我们的数据集中心肌炎与 LTBI 相比,最小的基因集仅 9 个基因的预测错误相同,为 11%。此外,对于所有之前发表的使用全血基因表达的成人研究,该最小集合显示出对 TB 与 LTBI 有显著的区分价值,平均预测误差在 17%至 23%之间。为了确定一个稳健的代表性基因集,以便在不同遗传背景的人群中表现良好,我们选择了 10 个在所有文献数据集和我们的数据集中心肌炎与 TB、LTBI 和 HC 之间具有高度区分性的基因。这些基因的功能注释突出了参与钙信号和钙代谢的基因作为活动性 TB 生物标志物的可能作用。在一个额外的 54 名 Warao 美洲印第安人儿童 LTBI、HC 和非 TB 肺炎的队列中,通过定量实时聚合酶链反应对这 10 个基因进行了验证。决策树分析表明,十个基因中的五个足以正确分类 78%的 TB 病例,没有 LTBI 受试者被错误地分类为 TB(100%特异性)。
我们的数据证明了进一步探索我们的特征集作为儿童结核病潜在诊断的生物标志物是合理的。我们表明,由于在不同种族群体中识别不同的生物标志物是显而易见的,因此在所有可用的队列中交叉验证新识别的标志物是很重要的。