Department of Civil and Environmental Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, South Korea.
Water Res. 2013 Apr 1;47(5):1858-66. doi: 10.1016/j.watres.2013.01.014. Epub 2013 Jan 17.
Here, we demonstrated that nano zero-valent iron (nZVI) impregnated onto self-organized TiO(2) nanotube thin films exhibits both oxidation and reduction capacities in addition to the possible electron transfer from TiO(2) to nZVI. The TiO(2) nanotubes were synthesized by anodization of titanium foil in a two-electrode system. Amorphous TiO(2) (amTiO(2)) nanotubes were annealed at 450 °C for 1 h to produce crystalline TiO(2) (crTiO(2)) nanotubes. The nZVI particles were immobilized on the TiO(2) array film by direct borohydride reduction. Field emission scanning electron microscopy (FE-SEM) analysis of the crystalline TiO(2) nanotube with nZVI (nZVI/crTiO(2)) indicated that the nZVI particles with a mean particle diameter of 28.38 ± 11.81 nm were uniformly distributed onto entire crTiO(2) nanotube surface with a mean pore diameter of 75.24 ± 17.66 nm and a mean length of 40.07 μm. Environmental applicability of our proposed nZVI/TiO(2) nanotube thin films was tested for methyl orange (MO) degradation in the aqueous system with and without oxygen. Since oxygen could facilitate the nZVI oxidation and inhibit electron transfer from crTiO(2) to nZVI surface, MO degradation by nZVI/crTiO(2) in the presence of oxygen was significantly suppressed whereas nZVI/crTiO(2) in the absence of oxygen enhanced MO degradation. MO degradation rate by each sample without oxygen were in following order: nZVI/crTiO(2) (k(obs) = 0.311 min(-1)) > nZVI/amTiO(2) (k(obs) = 0.164 min(-1)) > crTiO(2) (k(obs) = 0.068 min(-1)). This result can be explained with a synergistic effect of the significant reduction by highly-dispersed nZVI particles on TiO(2) nanotubes as well as the electron transfer from the conduction band of crTiO(2) to the nZVI on the crTiO(2) for the degradation of MO.
在这里,我们证明了负载在自组装二氧化钛纳米管薄膜上的纳米零价铁(nZVI)除了可能从 TiO2 到 nZVI 的电子转移之外,还具有氧化还原能力。TiO2 纳米管是通过钛箔在双电极系统中的阳极氧化合成的。无定形 TiO2(amTiO2)纳米管在 450°C 下退火 1 小时以产生结晶 TiO2(crTiO2)纳米管。nZVI 颗粒通过直接硼氢化还原固定在 TiO2 阵列薄膜上。具有 nZVI(nZVI/crTiO2)的结晶 TiO2 纳米管的场发射扫描电子显微镜(FE-SEM)分析表明,nZVI 颗粒的平均粒径为 28.38±11.81nm,均匀分布在整个 crTiO2 纳米管表面,平均孔径为 75.24±17.66nm,平均长度为 40.07μm。我们提出的 nZVI/TiO2 纳米管薄膜在有氧和无氧条件下在水溶液中对甲基橙(MO)降解的环境适用性进行了测试。由于氧气可以促进 nZVI 的氧化并抑制电子从 crTiO2 到 nZVI 表面的转移,因此在有氧存在下,nZVI/crTiO2 对 MO 的降解明显受到抑制,而在无氧存在下,nZVI/crTiO2 增强了 MO 的降解。每个无氧气样品的 MO 降解速率顺序如下:nZVI/crTiO2(kobs=0.311min-1)>nZVI/amTiO2(kobs=0.164min-1)>crTiO2(kobs=0.068min-1)。这一结果可以用高度分散的 nZVI 颗粒对 TiO2 纳米管的显著还原以及从 crTiO2 的导带到 crTiO2 上的 nZVI 的电子转移对 MO 降解的协同作用来解释。