Suppr超能文献

协同作用作为大肠杆菌 1-丙醇生产代谢工程的设计原则。

Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli.

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles 5531 Boelter Hall, Los Angeles, CA 90095, USA.

出版信息

Metab Eng. 2013 May;17:12-22. doi: 10.1016/j.ymben.2013.01.008. Epub 2013 Jan 31.

Abstract

Synthesis of a desired product can often be achieved via more than one metabolic pathway. Whether naturally evolved or synthetically engineered, these pathways often exhibit specific properties that are suitable for production under distinct conditions and host organisms. Synergy between pathways arises when the underlying pathway characteristics, such as reducing equivalent demand, ATP requirement, intermediate utilization, and cofactor preferences, are complementary to each other. Utilization of such pathways in combination leads to an increased metabolite productivity and/or yield compared to using each pathway alone. This work illustrates the principle of synergy between two different pathways for 1-propanol production in Escherichia coli. A model-guided design based on maximum theoretical yield calculations identified synergy of the native threonine pathway and the heterologous citramalate pathway in terms of production yield across all flux ratios between the two pathways. Characterization of the individual pathways by host gene deletions demonstrates their distinct metabolic characteristics: the necessity of TCA cycle for threonine pathway and the independence of TCA cycle for the citramalate pathway. The two pathways are also complementary in driving force demands. Production experiments verified the synergistic effects predicted by the yield model, in which the platform with dual pathway for 2-ketobutyrate synthesis achieved higher yield (0.15g/g of glucose) and productivity (0.12g/L/h) of 1-propanol than individual ones alone: the threonine pathway (0.09g/g; 0.04g/L/h) or the citramalate pathway (0.11g/g; 0.04g/L/h). Thus, incorporation of synergy into the design principle of metabolic engineering may improve the production yield and rate of the desired compound.

摘要

目标产物的合成通常可以通过不止一条代谢途径来实现。无论是自然进化还是人工设计,这些途径通常都具有特定的性质,适合在不同的条件和宿主生物中进行生产。当基础途径的特性(如还原当量需求、ATP 需求、中间产物利用和辅因子偏好)互补时,途径之间就会产生协同作用。与单独使用每条途径相比,组合使用这些途径可以提高代谢产物的生产力和/或产量。本工作说明了协同两种不同途径在大肠杆菌中生产 1-丙醇的原理。基于最大理论产率计算的模型指导设计确定了天然苏氨酸途径和异源柠檬酸合酶途径之间的协同作用,表现在两条途径之间所有通量比下的生产产率。通过宿主基因缺失对各条途径进行的特性分析表明了它们不同的代谢特性:苏氨酸途径需要 TCA 循环,而柠檬酸合酶途径则独立于 TCA 循环。两条途径在驱动力需求方面也具有互补性。通过生产实验验证了产率模型预测的协同效应,其中用于 2-酮丁酸合成的双途径平台实现了比单独途径更高的 1-丙醇产率(0.15g/g 葡萄糖)和生产力(0.12g/L/h):苏氨酸途径(0.09g/g;0.04g/L/h)或柠檬酸合酶途径(0.11g/g;0.04g/L/h)。因此,将协同作用纳入代谢工程的设计原则中可能会提高目标化合物的生产产率和速率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验