Suppr超能文献

工程化的柠檬酸合酶提高了大肠杆菌中柠檬酸的生成。

Engineered citrate synthase improves citramalic acid generation in Escherichia coli.

机构信息

School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia.

出版信息

Biotechnol Bioeng. 2020 Sep;117(9):2781-2790. doi: 10.1002/bit.27450. Epub 2020 Jun 20.

Abstract

The microbial product citramalic acid (citramalate) serves as a five-carbon precursor for the chemical synthesis of methacrylic acid. This biochemical is synthesized in Escherichia coli directly by the condensation of pyruvate and acetyl-CoA via the enzyme citramalate synthase. The principal competing enzyme with citramalate synthase is citrate synthase, which mediates the condensation reaction of oxaloacetate and acetyl-CoA to form citrate and begin the tricarboxylic acid cycle. A deletion in the gltA gene coding citrate synthase prevents acetyl-CoA flux into the tricarboxylic acid cycle, and thus necessitates the addition of glutamate. In this study the E. coli citrate synthase was engineered to contain point mutations intended to reduce the enzyme's affinity for acetyl-CoA, but not eliminate its activity. Cell growth, enzyme activity and citramalate production were compared in several variants in shake flasks and controlled fermenters. Citrate synthase GltA[F383M] not only facilitated cell growth without the presence of glutamate, but also improved the citramalate production by 125% compared with the control strain containing the native citrate synthase in batch fermentation. An exponential feeding strategy was employed in a fed-batch process using MEC626/pZE12-cimA harboring the GltA[F383M] variant, which generated over 60 g/L citramalate with a yield of 0.53 g citramalate/g glucose in 132 hr. These results demonstrate protein engineering can be used as an effective tool to redirect carbon flux by reducing enzyme activity and improve the microbial production of traditional commodity chemicals.

摘要

微生物产物柠檬酸(柠檬酸)可用作化学合成甲基丙烯酸的五碳前体。这种生物化学物质是通过酶柠檬酸合酶直接由丙酮酸和乙酰辅酶 A 缩合在大肠杆菌中合成的。与柠檬酸合酶竞争的主要酶是柠檬酸合酶,它介导草酰乙酸和乙酰辅酶 A 的缩合反应,形成柠檬酸并开始三羧酸循环。编码柠檬酸合酶的 gltA 基因缺失阻止了乙酰辅酶 A 流入三羧酸循环,因此需要添加谷氨酸。在这项研究中,对大肠杆菌柠檬酸合酶进行了工程改造,使其包含旨在降低酶对乙酰辅酶 A 的亲和力但不消除其活性的点突变。在摇瓶和控制发酵罐中比较了几种变体的细胞生长、酶活性和柠檬酸产量。与含有天然柠檬酸合酶的对照菌株相比,柠檬酸合酶 GltA[F383M]不仅在没有谷氨酸的情况下促进了细胞生长,而且在分批发酵中柠檬酸产量提高了 125%。在含有 GltA[F383M]变体的 MEC626/pZE12-cimA 的补料分批过程中采用指数进料策略,在 132 小时内产生了超过 60g/L 的柠檬酸,产率为 0.53g 柠檬酸/g 葡萄糖。这些结果表明,蛋白质工程可以用作通过降低酶活性重新定向碳通量并提高传统商品化学品的微生物产量的有效工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验