Suppr超能文献

脊椎动物病原体兔脑炎微孢子虫的杂合性水平极低。

Extremely reduced levels of heterozygosity in the vertebrate pathogen Encephalitozoon cuniculi.

作者信息

Selman Mohammed, Sak Bohumil, Kváč Martin, Farinelli Laurent, Weiss Louis M, Corradi Nicolas

机构信息

Canadian Institute for Advanced Research, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.

出版信息

Eukaryot Cell. 2013 Apr;12(4):496-502. doi: 10.1128/EC.00307-12. Epub 2013 Feb 2.

Abstract

The genomes of microsporidia in the genus Encephalitozoon have been extensively studied for their minimalistic features, but they have seldom been used to investigate basic characteristics of the biology of these organisms, such as their ploidy or their mode of reproduction. In the present study, we aimed to tackle this issue by mapping Illumina sequence reads against the genomes of four strains of E. cuniculi. This approach, combined with more conventional molecular biology techniques, resulted in the identification of heterozygosity in all strains investigated, a typical signature of a diploid nuclear state. In sharp contrast with similar studies recently performed on a distant microsporidian lineage (Nematocida spp.), the level of heterozygosity that we identified across the E. cuniculi genomes was found to be extremely low. This reductive intraindividual genetic variation could result from the long-term propagation of these strains under laboratory conditions, but we propose that it could also reflect an intrinsic capacity of these vertebrate pathogens to self-reproduce.

摘要

脑胞内原虫属微孢子虫的基因组因其简约特征而得到广泛研究,但它们很少被用于研究这些生物体生物学的基本特征,如它们的倍性或繁殖方式。在本研究中,我们旨在通过将Illumina序列读数与四种兔脑炎微孢子虫菌株的基因组进行比对来解决这个问题。这种方法与更传统的分子生物学技术相结合,导致在所研究的所有菌株中鉴定出杂合性,这是二倍体核状态的典型特征。与最近对一个远缘微孢子虫谱系(线虫微孢子虫属)进行的类似研究形成鲜明对比的是,我们在兔脑炎微孢子虫基因组中鉴定出的杂合性水平极低。这种个体内遗传变异的减少可能是由于这些菌株在实验室条件下的长期传代,但我们认为这也可能反映了这些脊椎动物病原体自我繁殖的内在能力。

相似文献

1
Extremely reduced levels of heterozygosity in the vertebrate pathogen Encephalitozoon cuniculi.
Eukaryot Cell. 2013 Apr;12(4):496-502. doi: 10.1128/EC.00307-12. Epub 2013 Feb 2.
5
Identification and characterization of three Encephalitozoon cuniculi strains.
Parasitology. 1995 Nov;111 ( Pt 4):411-21. doi: 10.1017/s0031182000065914.
6
Dynamics of parasitophorous vacuoles formed by the microsporidian pathogen Encephalitozoon cuniculi.
Fungal Genet Biol. 2017 Oct;107:20-23. doi: 10.1016/j.fgb.2017.07.006. Epub 2017 Jul 25.
8
Ribosomal DNA sequences of Encephalitozoon hellem and Encephalitozoon cuniculi: species identification and phylogenetic construction.
J Eukaryot Microbiol. 1993 May-Jun;40(3):354-62. doi: 10.1111/j.1550-7408.1993.tb04928.x.
9
Lethal Encephalitozoon cuniculi genotype III infection in Steppe lemmings (Lagurus lagurus).
Vet Parasitol. 2014 Sep 15;205(1-2):357-60. doi: 10.1016/j.vetpar.2014.07.008. Epub 2014 Jul 15.

引用本文的文献

2
Polyploidy is widespread in Microsporidia.
Microbiol Spectr. 2024 Feb 6;12(2):e0366923. doi: 10.1128/spectrum.03669-23. Epub 2024 Jan 12.
3
Morphological characterization and genetic diversity of a new microsporidium, n. sp. from the adipose tissue of (Crustacea: Sididae).
Front Cell Infect Microbiol. 2023 Jan 27;13:1125394. doi: 10.3389/fcimb.2023.1125394. eCollection 2023.
5
Comparative Genomics of Microsporidia.
Exp Suppl. 2022;114:43-69. doi: 10.1007/978-3-030-93306-7_2.
7
Evolution of microsporidia: An extremely successful group of eukaryotic intracellular parasites.
PLoS Pathog. 2020 Feb 13;16(2):e1008276. doi: 10.1371/journal.ppat.1008276. eCollection 2020 Feb.
8
Microsporidia with Vertical Transmission Were Likely Shaped by Nonadaptive Processes.
Genome Biol Evol. 2020 Jan 1;12(1):3599-3614. doi: 10.1093/gbe/evz270.
9
Are molecular tools clarifying or confusing our understanding of the public health threat from zoonotic enteric protozoa in wildlife?
Int J Parasitol Parasites Wildl. 2019 Feb 13;9:323-341. doi: 10.1016/j.ijppaw.2019.01.010. eCollection 2019 Aug.
10
Genetic and Genome Analyses Reveal Genetically Distinct Populations of the Bee Pathogen Nosema ceranae from Thailand.
Microb Ecol. 2019 May;77(4):877-889. doi: 10.1007/s00248-018-1268-z. Epub 2018 Oct 4.

本文引用的文献

2
Microsporidian genome analysis reveals evolutionary strategies for obligate intracellular growth.
Genome Res. 2012 Dec;22(12):2478-88. doi: 10.1101/gr.142802.112. Epub 2012 Jul 18.
3
Gain and loss of multiple functionally related, horizontally transferred genes in the reduced genomes of two microsporidian parasites.
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12638-43. doi: 10.1073/pnas.1205020109. Epub 2012 Jul 16.
4
5
Microsporidia: Horizontal gene transfers in vicious parasites.
Mob Genet Elements. 2011 Nov 1;1(4):251-255. doi: 10.4161/mge.18611.
6
Sex, outcrossing and mating types: unsolved questions in fungi and beyond.
J Evol Biol. 2012 Jun;25(6):1020-38. doi: 10.1111/j.1420-9101.2012.02495.x. Epub 2012 Apr 20.
7
Having a pair: the key to immune evasion for the diploid pathogen Schistosoma japonicum.
Sci Rep. 2012;2:346. doi: 10.1038/srep00346. Epub 2012 Mar 30.
8
Sex in fungi.
Annu Rev Genet. 2011;45:405-30. doi: 10.1146/annurev-genet-110410-132536. Epub 2011 Sep 13.
9
Sex determination in the first-described sexual fungus.
Eukaryot Cell. 2011 Nov;10(11):1485-91. doi: 10.1128/EC.05149-11. Epub 2011 Sep 9.
10
Acquisition of an animal gene by microsporidian intracellular parasites.
Curr Biol. 2011 Aug 9;21(15):R576-7. doi: 10.1016/j.cub.2011.06.017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验