Suppr超能文献

人红细胞容积敏感性 K⁺、Cl⁻共转运的热失活和质膜膨出变化。

Thermal inactivation of volume-sensitive K⁺,Cl⁻ cotransport and plasma membrane relief changes in human erythrocytes.

机构信息

Department of Biophysics and Laboratory of Physical Chemistry of Biomembranes, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.

出版信息

Pflugers Arch. 2013 Jul;465(7):977-83. doi: 10.1007/s00424-013-1221-4. Epub 2013 Feb 2.

Abstract

Previously, we reported that in mammalian erythrocytes irreversible annealing of spectrin heterodimers at 49-50 °C abolished cell volume-dependent regulation of ion carriers, thus suggesting an implication of a two-dimensional (2D) membrane carcass in volume sensing and/or signal transduction. To further examine this hypothesis, we employed atomic force microscopy. This method revealed folded membrane relief of fixed human erythrocytes with an average wave height of 3-5 nm covered by globular structures with a diameter of 40-50 nm and an average height of 1-2 nm. Erythrocyte swelling caused by reduction of medium osmolality decreased the height of membrane surface waves by 40 % and increased K(+),Cl(-) cotransport by approximately sixfold. Both volume-sensitive changes of membrane relief and activity of K(+),Cl(-) cotransporter were abolished by a 10-min preincubation at 50 °C. Our results strongly suggest that volume-dependent alterations of the human erythrocyte membrane relief are caused by reorganization of the 2D spectrin-actin network contributing to regulation of the activity of volume-sensitive ion transporters.

摘要

先前,我们报道称在哺乳动物的红细胞中,在 49-50°C 下,血影蛋白异二聚体的不可逆退火会消除细胞体积依赖性对离子载体的调节,这表明二维(2D)膜骨架在体积感应和/或信号转导中发挥作用。为了进一步验证这一假说,我们采用原子力显微镜进行研究。该方法揭示了固定的人类红细胞的折叠膜起伏,平均波高为 3-5nm,表面覆盖着直径为 40-50nm、平均高度为 1-2nm 的球形结构。由于介质渗透压降低导致的红细胞肿胀使膜表面波的高度降低了 40%,并使 K(+),Cl(-)协同转运增加了约六倍。在 50°C 下孵育 10 分钟可完全消除膜起伏的体积敏感性变化和 K(+),Cl(-)协同转运的活性。我们的研究结果强烈表明,人类红细胞膜起伏的体积依赖性改变是由 2D 血影蛋白-肌动蛋白网络的重排引起的,这有助于调节体积敏感性离子转运体的活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验