文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人类红细胞膜的代谢重塑。

Metabolic remodeling of the human red blood cell membrane.

机构信息

G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1289-94. doi: 10.1073/pnas.0910785107. Epub 2010 Jan 6.


DOI:10.1073/pnas.0910785107
PMID:20080583
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2802590/
Abstract

The remarkable deformability of the human red blood cell (RBC) results from the coupled dynamic response of the phospholipid bilayer and the spectrin molecular network. Here we present quantitative connections between spectrin morphology and membrane fluctuations of human RBCs by using dynamic full-field laser interferometry techniques. We present conclusive evidence that the presence of adenosine 5'-triphosphate (ATP) facilitates non-equilibrium dynamic fluctuations in the RBC membrane that are highly correlated with the biconcave shape of RBCs. Spatial analysis of the fluctuations reveals that these non-equilibrium membrane vibrations are enhanced at the scale of spectrin mesh size. Our results indicate that the dynamic remodeling of the coupled membranes powered by ATP results in non-equilibrium membrane fluctuations manifesting from both metabolic and thermal energies and also maintains the biconcave shape of RBCs.

摘要

人类红细胞(RBC)的显著变形性源于磷脂双层和血影蛋白分子网络的耦合动态响应。在这里,我们通过使用动态全场激光干涉技术,呈现了血影蛋白形态与人类 RBC 膜波动之间的定量关系。我们提供确凿的证据表明,三磷酸腺苷(ATP)的存在促进了 RBC 膜的非平衡动力学波动,这与 RBC 的双凹形高度相关。波动的空间分析表明,这些非平衡膜振动在血影蛋白网格尺寸的尺度上得到增强。我们的结果表明,由 ATP 驱动的耦合膜的动态重塑导致了非平衡膜波动,这些波动来自代谢和热能,并维持 RBC 的双凹形。

相似文献

[1]
Metabolic remodeling of the human red blood cell membrane.

Proc Natl Acad Sci U S A. 2010-1-6

[2]
Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering.

PLoS One. 2012-8-10

[3]
Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.

Proc Natl Acad Sci U S A. 2018-4-2

[4]
Membrane Remodelling and Vesicle Formation During Ageing of Human Red Blood Cells.

Cell Physiol Biochem. 2017

[5]
Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.

J Clin Invest. 1978-3

[6]
Measurement of red blood cell mechanics during morphological changes.

Proc Natl Acad Sci U S A. 2010-3-29

[7]
The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release.

Microvasc Res. 2012-2-14

[8]
Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.

Biomech Model Mechanobiol. 2020-10

[9]
The spectrin phosphorylation reaction in human erythrocytes.

Prog Clin Biol Res. 1978

[10]
Dependence of spectrin organization in red blood cell membranes on cell metabolism: implications for control of red cell shape, deformability, and surface area.

Semin Hematol. 1979-1

引用本文的文献

[1]
Mechanical adaptivity of red blood cell flickering to extrinsic membrane stiffening by the solid-like biosurfactant β-Aescin.

Biophys J. 2025-5-6

[2]
Microfluidic chip designs and their application for E antigen typing on red blood cells.

RSC Adv. 2025-2-24

[3]
Dynamic mechanisms for membrane skeleton transitions.

J Cell Sci. 2025-2-15

[4]
Stomatocyte-discocyte-echinocyte transformations of erythrocyte modulated by membrane-cytoskeleton mechanical properties.

Biophys J. 2025-1-21

[5]
Biophysical profiling of red blood cells from thin-film blood smears using deep learning.

Heliyon. 2024-7-26

[6]
Designing a single-arm phase 2 clinical trial of mitapivat for adult patients with erythrocyte membranopathies (SATISFY): a framework for interventional trials in rare anaemias - pilot study protocol.

BMJ Open. 2024-7-30

[7]
Red blood cell flickering activity locally controlled by holographic optical tweezers.

iScience. 2024-5-8

[8]
Optical trapping with holographically structured light for single-cell studies.

Biophys Rev (Melville). 2023-1-18

[9]
Measuring sub-nanometer undulations at microsecond temporal resolution with metal- and graphene-induced energy transfer spectroscopy.

Nat Commun. 2024-2-27

[10]
Recent developments in the use of pyruvate kinase activators as a new approach for treating sickle cell disease.

Blood. 2024-3-7

本文引用的文献

[1]
ATP-dependent mechanics of red blood cells.

Proc Natl Acad Sci U S A. 2009-9-8

[2]
Diffraction phase and fluorescence microscopy.

Opt Express. 2006-9-4

[3]
Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum.

Proc Natl Acad Sci U S A. 2008-9-16

[4]
Cytoskeleton mediated effective elastic properties of model red blood cell membranes.

J Chem Phys. 2008-8-14

[5]
Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence.

Biophys J. 2008-5-15

[6]
Fluctuations of coupled fluid and solid membranes with application to red blood cells.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007-11

[7]
Coherence properties of red blood cell membrane motions.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007-9

[8]
Cytoskeletal dynamics of human erythrocyte.

Proc Natl Acad Sci U S A. 2007-3-20

[9]
Active elastic network: cytoskeleton of the red blood cell.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007-1

[10]
Nonequilibrium mechanics of active cytoskeletal networks.

Science. 2007-1-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索