Suppr超能文献

缺氧性肺动脉高压对大肺动脉被动和主动机械性能的胶原沉积的影响。

Effects of collagen deposition on passive and active mechanical properties of large pulmonary arteries in hypoxic pulmonary hypertension.

机构信息

Department of Biomedical Engineering, University of Wisconsin at Madison, 2145 ECB; 1550 Engineering Drive, Madison, WI, 53706-1609, USA.

出版信息

Biomech Model Mechanobiol. 2013 Nov;12(6):1115-25. doi: 10.1007/s10237-012-0467-7. Epub 2013 Feb 3.

Abstract

Proximal pulmonary artery (PA) stiffening is a strong predictor of mortality in pulmonary hypertension. Collagen accumulation is mainly responsible for PA stiffening in hypoxia-induced pulmonary hypertension (HPH) in mouse models. We hypothesized that collagen cross-linking and the type I isoform are the main determinants of large PA mechanical changes during HPH, which we tested by exposing mice that resist type I collagen degradation (Col1a1[Formula: see text] and littermate controls (Col1a1[Formula: see text] to hypoxia for 10 days with or without [Formula: see text]-aminopropionitrile (BAPN) treatment to prevent cross-link formation. Static and dynamic mechanical tests were performed on isolated PAs with smooth muscle cells (SMC) in passive and active states. Percentages of type I and III collagen were quantified by histology; total collagen content and cross-linking were measured biochemically. In the SMC passive state, for both genotypes, hypoxia tended to increase PA stiffness and damping capacity, and BAPN treatment limited these increases. These changes were correlated with collagen cross-linking ([Formula: see text]). In the SMC active state, hypoxia increased PA dynamic stiffness and BAPN had no effect in Col1a1[Formula: see text] mice ([Formula: see text]). PA stiffness did not change in Col1a1[Formula: see text] mice. Similarly, damping capacity did not change for either genotype. Type I collagen accumulated more in Col1a1[Formula: see text] mice, whereas type III collagen increased more in Col1a1[Formula: see text] mice during HPH. In summary, PA passive mechanical properties (both static and dynamic) are related to collagen cross-linking. Type I collagen turnover is critical to large PA remodeling during HPH when collagen metabolism is not mutated and type III collagen may serve as a reserve.

摘要

肺高血压患者的近段肺动脉(PA)僵硬度是死亡率的有力预测因子。在小鼠缺氧性肺动脉高压(HPH)模型中,胶原积累主要导致 PA 僵硬度增加。我们假设,在 HPH 期间,胶原交联和 I 型同工型是 PA 力学变化的主要决定因素,我们通过使抵抗 I 型胶原降解的小鼠(Col1a1[Formula: see text])和同窝对照(Col1a1[Formula: see text])暴露于缺氧 10 天,并分别用或不用[Formula: see text]-氨基丙腈(BAPN)处理来预防交联形成,从而对其进行了测试。对带有平滑肌细胞(SMC)的分离 PA 进行了静态和动态力学测试,SMC 处于被动和主动状态。通过组织学定量测量 I 型和 III 型胶原的百分比;通过生物化学方法测量总胶原含量和交联。在 SMC 被动状态下,对于两种基因型,缺氧均趋向于增加 PA 僵硬度和阻尼能力,BAPN 处理限制了这些增加。这些变化与胶原交联有关([Formula: see text])。在 SMC 主动状态下,缺氧增加了 PA 动态僵硬度,而 BAPN 在 Col1a1[Formula: see text]小鼠中没有影响([Formula: see text])。在 Col1a1[Formula: see text]小鼠中,PA 僵硬度没有变化。同样,对于任何基因型,阻尼能力都没有变化。在 Col1a1[Formula: see text]小鼠中,I 型胶原积累更多,而在 HPH 期间,III 型胶原在 Col1a1[Formula: see text]小鼠中增加更多。总之,PA 被动力学特性(静态和动态)与胶原交联有关。当胶原代谢未发生突变时,I 型胶原的周转率对于 HPH 期间的大 PA 重塑至关重要,而 III 型胶原可能作为储备。

相似文献

1
Effects of collagen deposition on passive and active mechanical properties of large pulmonary arteries in hypoxic pulmonary hypertension.
Biomech Model Mechanobiol. 2013 Nov;12(6):1115-25. doi: 10.1007/s10237-012-0467-7. Epub 2013 Feb 3.
2
Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):279-89. doi: 10.1007/s10237-011-0309-z. Epub 2011 May 3.
3
The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1823-31. doi: 10.1152/ajpheart.00493.2009. Epub 2010 Sep 17.
4
Pulmonary vascular collagen content, not cross-linking, contributes to right ventricular pulsatile afterload and overload in early pulmonary hypertension.
J Appl Physiol (1985). 2017 Feb 1;122(2):253-263. doi: 10.1152/japplphysiol.00325.2016. Epub 2016 Nov 17.
5
Validation of an arterial constitutive model accounting for collagen content and crosslinking.
Acta Biomater. 2016 Feb;31:276-287. doi: 10.1016/j.actbio.2015.11.058. Epub 2015 Nov 30.
6
Persistent vascular collagen accumulation alters hemodynamic recovery from chronic hypoxia.
J Biomech. 2012 Mar 15;45(5):799-804. doi: 10.1016/j.jbiomech.2011.11.020. Epub 2011 Dec 17.
7
Impact of chronic hypoxia on proximal pulmonary artery wave propagation and mechanical properties in rats.
Am J Physiol Heart Circ Physiol. 2018 Jun 1;314(6):H1264-H1278. doi: 10.1152/ajpheart.00695.2017. Epub 2018 Mar 16.
8
Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension.
PLoS One. 2013 Nov 6;8(11):e78569. doi: 10.1371/journal.pone.0078569. eCollection 2013.
9
The effects of vasoactivity and hypoxic pulmonary hypertension on extralobar pulmonary artery biomechanics.
J Biomech. 2010 Jul 20;43(10):1864-9. doi: 10.1016/j.jbiomech.2010.03.033. Epub 2010 Apr 22.
10
Linked opening angle and histological and mechanical aspects of the proximal pulmonary arteries of healthy and pulmonary hypertensive rats and calves.
Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H1810-8. doi: 10.1152/ajpheart.00025.2011. Epub 2011 Aug 19.

引用本文的文献

1
An easily overlooked cause of pulmonary arterial hypertension-thiamine deficiency.
Front Nutr. 2025 Jul 31;12:1633864. doi: 10.3389/fnut.2025.1633864. eCollection 2025.
2
Roles of LncRNAs in the Pathogenesis of Pulmonary Hypertension.
Rev Cardiovasc Med. 2024 Jun 17;25(6):217. doi: 10.31083/j.rcm2506217. eCollection 2024 Jun.
3
Establishment of a Biaxial Testing System for Characterization of Right Ventricle Viscoelasticity Under Physiological Loadings.
Cardiovasc Eng Technol. 2024 Aug;15(4):405-417. doi: 10.1007/s13239-024-00722-5. Epub 2024 Mar 11.
4
A multi-scale clutch model for adhesion complex mechanics.
PLoS Comput Biol. 2023 Jul 14;19(7):e1011250. doi: 10.1371/journal.pcbi.1011250. eCollection 2023 Jul.
5
Pulmonary hypertension: Linking inflammation and pulmonary arterial stiffening.
Front Immunol. 2022 Oct 5;13:959209. doi: 10.3389/fimmu.2022.959209. eCollection 2022.
7
Role of fibulin-5 insufficiency and prolapse progression on murine vaginal biomechanical function.
Sci Rep. 2021 Oct 25;11(1):20956. doi: 10.1038/s41598-021-00351-1.
8
Integrated analysis of mA mRNA methylation in rats with monocrotaline-induced pulmonary arterial hypertension.
Aging (Albany NY). 2021 Jul 26;13(14):18238-18256. doi: 10.18632/aging.203230.
9
Inverse modeling framework for characterizing patient-specific microstructural changes in the pulmonary arteries.
J Mech Behav Biomed Mater. 2021 Jul;119:104448. doi: 10.1016/j.jmbbm.2021.104448. Epub 2021 Mar 27.
10
Genetic Delivery and Gene Therapy in Pulmonary Hypertension.
Int J Mol Sci. 2021 Jan 25;22(3):1179. doi: 10.3390/ijms22031179.

本文引用的文献

1
Stiffening of the Extrapulmonary Arteries From Rats in Chronic Hypoxic Pulmonary Hypertension.
J Res Natl Inst Stand Technol. 2008 Aug 1;113(4):239-49. doi: 10.6028/jres.113.018. Print 2008 Jul-Aug.
2
In vitro effect of corneal collagen cross-linking on corneal hydration properties and stiffness.
Graefes Arch Clin Exp Ophthalmol. 2013 Feb;251(2):543-7. doi: 10.1007/s00417-012-2082-9. Epub 2012 Jun 23.
3
Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK.
Oncogene. 2013 Apr 4;32(14):1863-8. doi: 10.1038/onc.2012.202. Epub 2012 May 28.
4
Influence of acetaminophen consumption and exercise on Achilles tendon structural properties in male Wistar rats.
Am J Physiol Regul Integr Comp Physiol. 2012 Apr 15;302(8):R990-5. doi: 10.1152/ajpregu.00659.2011. Epub 2012 Feb 22.
7
Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):279-89. doi: 10.1007/s10237-011-0309-z. Epub 2011 May 3.
8
The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1823-31. doi: 10.1152/ajpheart.00493.2009. Epub 2010 Sep 17.
9
The effects of vasoactivity and hypoxic pulmonary hypertension on extralobar pulmonary artery biomechanics.
J Biomech. 2010 Jul 20;43(10):1864-9. doi: 10.1016/j.jbiomech.2010.03.033. Epub 2010 Apr 22.
10
Collagen-related gene and protein expression changes in the lung in response to chronic hypoxia.
Biomech Model Mechanobiol. 2009 Aug;8(4):263-72. doi: 10.1007/s10237-008-0133-2. Epub 2008 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验