Laboratori de Càlcul Numèric (LaCaN), Universitat Politècnica de Catalunya, Barcelona, Spain.
E.T.S. de Ingeniería de Caminos, Universitat Politècnica de Catalunya, Barcelona, Spain.
PLoS Comput Biol. 2023 Jul 14;19(7):e1011250. doi: 10.1371/journal.pcbi.1011250. eCollection 2023 Jul.
Cell-matrix adhesion is a central mechanical function to a large number of phenomena in physiology and disease, including morphogenesis, wound healing, and tumor cell invasion. Today, how single cells respond to different extracellular cues has been comprehensively studied. However, how the mechanical behavior of the main individual molecules that form an adhesion complex cooperatively responds to force within the adhesion complex is still poorly understood. This is a key aspect of cell adhesion because how these cell adhesion molecules respond to force determines not only cell adhesion behavior but, ultimately, cell function. To answer this question, we develop a multi-scale computational model for adhesion complexes mechanics. We extend the classical clutch hypothesis to model individual adhesion chains made of a contractile actin network, a talin rod, and an integrin molecule that binds at individual adhesion sites on the extracellular matrix. We explore several scenarios of integrins dynamics and analyze the effects of diverse extracellular matrices on the behavior of the adhesion molecules and on the whole adhesion complex. Our results describe how every single component of the adhesion chain mechanically responds to the contractile actomyosin force and show how they control the traction forces exerted by the cell on the extracellular space. Importantly, our computational results agree with previous experimental data at the molecular and cellular levels. Our multi-scale clutch model presents a step forward not only to further understand adhesion complexes mechanics but also to impact, e.g., the engineering of biomimetic materials, tissue repairment, or strategies to arrest tumor progression.
细胞-基质黏附是许多生理和疾病现象的核心力学功能,包括形态发生、伤口愈合和肿瘤细胞浸润。如今,人们已经全面研究了单细胞如何对不同的细胞外信号做出反应。然而,形成黏附复合物的主要单个分子的机械行为如何协同响应黏附复合物内的力,仍知之甚少。这是细胞黏附的一个关键方面,因为这些细胞黏附分子如何响应力不仅决定了细胞黏附行为,而且最终决定了细胞功能。为了回答这个问题,我们开发了一种用于黏附复合物力学的多尺度计算模型。我们扩展了经典的离合器假说,以模拟由收缩性肌动球蛋白网络、talin 棒和整合素分子组成的单个黏附链,这些整合素分子在细胞外基质上的单个黏附位点结合。我们探讨了整合素动力学的几种情况,并分析了不同细胞外基质对黏附分子行为和整个黏附复合物的影响。我们的结果描述了黏附链的每个单个组件如何对收缩性肌动球蛋白力做出机械响应,并展示了它们如何控制细胞对细胞外空间施加的牵引力。重要的是,我们的计算结果与分子和细胞水平的先前实验数据一致。我们的多尺度离合器模型不仅在进一步理解黏附复合物力学方面向前迈进了一步,而且还对生物仿生材料的工程、组织修复或阻止肿瘤进展的策略等产生影响。