Suppr超能文献

通过部分循环戊糖磷酸途径对氧化葡萄糖杆菌 621H 葡萄糖分解代谢的通量组学和转录组学联合分析。

Combined fluxomics and transcriptomics analysis of glucose catabolism via a partially cyclic pentose phosphate pathway in Gluconobacter oxydans 621H.

机构信息

Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany.

出版信息

Appl Environ Microbiol. 2013 Apr;79(7):2336-48. doi: 10.1128/AEM.03414-12. Epub 2013 Feb 1.

Abstract

In this study, the distribution and regulation of periplasmic and cytoplasmic carbon fluxes in Gluconobacter oxydans 621H with glucose were studied by (13)C-based metabolic flux analysis ((13)C-MFA) in combination with transcriptomics and enzyme assays. For (13)C-MFA, cells were cultivated with specifically (13)C-labeled glucose, and intracellular metabolites were analyzed for their labeling pattern by liquid chromatography-mass spectrometry (LC-MS). In growth phase I, 90% of the glucose was oxidized periplasmically to gluconate and partially further oxidized to 2-ketogluconate. Of the glucose taken up by the cells, 9% was phosphorylated to glucose 6-phosphate, whereas 91% was oxidized by cytoplasmic glucose dehydrogenase to gluconate. Additional gluconate was taken up into the cells by transport. Of the cytoplasmic gluconate, 70% was oxidized to 5-ketogluconate and 30% was phosphorylated to 6-phosphogluconate. In growth phase II, 87% of gluconate was oxidized to 2-ketogluconate in the periplasm and 13% was taken up by the cells and almost completely converted to 6-phosphogluconate. Since G. oxydans lacks phosphofructokinase, glucose 6-phosphate can be metabolized only via the oxidative pentose phosphate pathway (PPP) or the Entner-Doudoroff pathway (EDP). (13)C-MFA showed that 6-phosphogluconate is catabolized primarily via the oxidative PPP in both phases I and II (62% and 93%) and demonstrated a cyclic carbon flux through the oxidative PPP. The transcriptome comparison revealed an increased expression of PPP genes in growth phase II, which was supported by enzyme activity measurements and correlated with the increased PPP flux in phase II. Moreover, genes possibly related to a general stress response displayed increased expression in growth phase II.

摘要

在这项研究中,通过基于 (13)C 的代谢通量分析 ((13)C-MFA) 结合转录组学和酶活性测定,研究了氧化葡萄糖杆菌 621H 利用葡萄糖时的周质和细胞质碳通量分布和调控。对于 (13)C-MFA,细胞在特异性 (13)C 标记的葡萄糖中培养,并通过液相色谱-质谱 (LC-MS) 分析细胞内代谢物的标记模式。在生长阶段 I 中,90%的葡萄糖被周质氧化为葡萄糖酸,并部分进一步氧化为 2-酮葡萄糖酸。细胞摄取的葡萄糖中,9%被磷酸化为葡萄糖 6-磷酸,而 91%被细胞质葡萄糖脱氢酶氧化为葡萄糖酸。通过转运将额外的葡萄糖酸摄取到细胞内。细胞质中的葡萄糖酸中,70%被氧化为 5-酮葡萄糖酸,30%被磷酸化为 6-磷酸葡萄糖酸。在生长阶段 II 中,87%的葡萄糖酸在周质中被氧化为 2-酮葡萄糖酸,13%被细胞摄取并几乎完全转化为 6-磷酸葡萄糖酸。由于氧化葡萄糖杆菌缺乏磷酸果糖激酶,葡萄糖 6-磷酸只能通过氧化戊糖磷酸途径 (PPP) 或 Entner-Doudoroff 途径 (EDP) 代谢。(13)C-MFA 表明,在生长阶段 I 和 II 中,6-磷酸葡萄糖酸主要通过氧化 PPP 代谢(分别为 62%和 93%),并通过氧化 PPP 循环碳通量。转录组比较表明,在生长阶段 II 中 PPP 基因的表达增加,这得到了酶活性测定的支持,并与阶段 II 中 PPP 通量的增加相关。此外,可能与一般应激反应相关的基因在生长阶段 II 中表达增加。

相似文献

2
Role of the pentose phosphate pathway and the Entner-Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H.
Appl Microbiol Biotechnol. 2013 May;97(10):4315-23. doi: 10.1007/s00253-013-4707-2. Epub 2013 Jan 25.
4
Metabolic engineering of Gluconobacter oxydans 621H for increased biomass yield.
Appl Microbiol Biotechnol. 2017 Jul;101(13):5453-5467. doi: 10.1007/s00253-017-8308-3. Epub 2017 May 8.
5
(13)C Tracers for Glucose Degrading Pathway Discrimination in Gluconobacter oxydans 621H.
Metabolites. 2015 Sep 2;5(3):455-74. doi: 10.3390/metabo5030455.
6
Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation.
Appl Environ Microbiol. 2010 Jul;76(13):4369-76. doi: 10.1128/AEM.03022-09. Epub 2010 May 7.
7
Revealing in vivo glucose utilization of Gluconobacter oxydans 621H Δmgdh strain by mutagenesis.
Microbiol Res. 2014 May-Jun;169(5-6):469-75. doi: 10.1016/j.micres.2013.08.002. Epub 2013 Sep 10.
8
Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
Appl Microbiol Biotechnol. 2010 Oct;88(3):711-8. doi: 10.1007/s00253-010-2779-9. Epub 2010 Jul 30.
9
Repurposing the Endogenous Type I-E CRISPR/Cas System for Gene Repression in WSH-003.
ACS Synth Biol. 2021 Jan 15;10(1):84-93. doi: 10.1021/acssynbio.0c00456. Epub 2021 Jan 5.

引用本文的文献

2
Highly efficient fermentation of 5-keto-D-fructose with Gluconobacter oxydans at different scales.
Microb Cell Fact. 2022 Dec 10;21(1):255. doi: 10.1186/s12934-022-01980-5.
3
Advancement in the molecular perspective of plant-endophytic interaction to mitigate drought stress in plants.
Front Microbiol. 2022 Sep 2;13:981355. doi: 10.3389/fmicb.2022.981355. eCollection 2022.
4
Metabolic engineering of for biomass-based applications.
3 Biotech. 2022 Oct;12(10):259. doi: 10.1007/s13205-022-03324-x. Epub 2022 Sep 3.
5
Comparative Genomics of Acetic Acid Bacteria within the Genus in Light of Beehive Habitat Adaptation.
Microorganisms. 2022 May 20;10(5):1058. doi: 10.3390/microorganisms10051058.

本文引用的文献

1
Role of the pentose phosphate pathway and the Entner-Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H.
Appl Microbiol Biotechnol. 2013 May;97(10):4315-23. doi: 10.1007/s00253-013-4707-2. Epub 2013 Jan 25.
2
13CFLUX2--high-performance software suite for (13)C-metabolic flux analysis.
Bioinformatics. 2013 Jan 1;29(1):143-5. doi: 10.1093/bioinformatics/bts646. Epub 2012 Oct 30.
3
Asymmetric reduction of diketones by two Gluconobacter oxydans oxidoreductases.
Appl Microbiol Biotechnol. 2013 Apr;97(8):3475-84. doi: 10.1007/s00253-012-4395-3. Epub 2012 Sep 18.
7
TARDIS-based microbial metabolomics: time and relative differences in systems.
Trends Microbiol. 2011 Jul;19(7):315-22. doi: 10.1016/j.tim.2011.05.004. Epub 2011 Jun 12.
8
Regulation of alternative sigma factor use.
Annu Rev Microbiol. 2011;65:37-55. doi: 10.1146/annurev.micro.112408.134219.
9
Selective, high conversion of D-glucose to 5-keto-D-gluoconate by Gluconobacter suboxydans.
Biosci Biotechnol Biochem. 2011;75(3):586-9. doi: 10.1271/bbb.100701. Epub 2011 Mar 7.
10
Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans.
Appl Microbiol Biotechnol. 2010 Oct;88(3):711-8. doi: 10.1007/s00253-010-2779-9. Epub 2010 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验