Suppr超能文献

β-琼脂酶催化模块内的一个额外肽段影响琼脂糖的降解模式。

An extra peptide within the catalytic module of a β-agarase affects the agarose degradation pattern.

机构信息

State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China.

出版信息

J Biol Chem. 2013 Mar 29;288(13):9519-31. doi: 10.1074/jbc.M112.412247. Epub 2013 Feb 1.

Abstract

Agarase hydrolyzes agarose into a series of oligosaccharides with repeating disaccharide units. The glycoside hydrolase (GH) module of agarase is known to be responsible for its catalytic activity. However, variations in the composition of the GH module and its effects on enzymatic functions have been minimally elucidated. The agaG4 gene, cloned from the genome of the agarolytic Flammeovirga strain MY04, encodes a 503-amino acid protein, AgaG4. Compared with elucidated agarases, AgaG4 contains an extra peptide (Asn(246)-Gly(302)) within its GH module. Heterologously expressed AgaG4 (recombinant AgaG4; rAgaG4) was determined to be an endo-type β-agarase. The protein degraded agarose into neoagarotetraose and neoagarohexaose at a final molar ratio of 1.5:1. Neoagarooctaose was the smallest substrate for rAgaG4, whereas neoagarotetraose was the minimal degradation product. Removing the extra fragment from the GH module led to the inability of the mutant (rAgaG4-T57) to degrade neoagarooctaose, and the final degradation products of agarose by the truncated protein were neoagarotetraose, neoagarohexaose, and neoagarooctaose at a final molar ratio of 2.7:2.8:1. The optimal temperature for agarose degradation also decreased to 40 °C for this mutant. Bioinformatic analysis suggested that tyrosine 276 within the extra fragment was a candidate active site residue for the enzymatic activity. Site-swapping experiments of Tyr(276) to 19 various other amino acids demonstrated that the characteristics of this residue were crucial for the AgaG4 degradation of agarose and the cleavage pattern of substrate.

摘要

琼脂酶将琼脂水解成一系列具有重复二糖单元的低聚糖。已知琼脂酶的糖苷水解酶 (GH) 模块负责其催化活性。然而,GH 模块的组成变化及其对酶功能的影响尚未得到充分阐明。从琼脂水解 Flammeovirga 菌株 MY04 的基因组中克隆的 agaG4 基因编码一个 503 个氨基酸的蛋白质,AgaG4。与已阐明的琼脂酶相比,AgaG4 在其 GH 模块内含有一个额外的肽(Asn(246)-Gly(302))。异源表达的 AgaG4(重组 AgaG4;rAgaG4)被确定为内切型β-琼脂酶。该蛋白将琼脂水解成 neoagarotetraose 和 neoagarohexaose,最终摩尔比为 1.5:1。neoagarooctaose 是 rAgaG4 的最小底物,而 neoagarotetraose 是最小的降解产物。从 GH 模块中去除额外的片段导致突变体(rAgaG4-T57)无法水解 neoagarooctaose,并且该截断蛋白对琼脂的最终降解产物为 neoagarotetraose、neoagarohexaose 和 neoagarooctaose,最终摩尔比为 2.7:2.8:1。该突变体对琼脂的最佳降解温度也降低到 40°C。生物信息学分析表明,额外片段内的酪氨酸 276 是酶活性的候选活性位点残基。将 Tyr(276) 替换为 19 种其他各种氨基酸的位点交换实验表明,该残基的特征对于 AgaG4 对琼脂的降解和底物的裂解模式至关重要。

相似文献

1
An extra peptide within the catalytic module of a β-agarase affects the agarose degradation pattern.
J Biol Chem. 2013 Mar 29;288(13):9519-31. doi: 10.1074/jbc.M112.412247. Epub 2013 Feb 1.
4
Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24.
J Biol Chem. 2007 Feb 9;282(6):3747-54. doi: 10.1074/jbc.M607888200. Epub 2006 Dec 13.
5
Cloning, expression and characterization of a new agarase-encoding gene from marine Pseudoalteromonas sp.
Biotechnol Lett. 2009 Oct;31(10):1565-70. doi: 10.1007/s10529-009-0042-1. Epub 2009 Jun 6.
6
Characterization of a GH50 β-Agarase: A Biotechnological Tool for Preparing Oligosaccharides from Agarose and Porphyran.
J Agric Food Chem. 2022 Aug 17;70(32):9931-9940. doi: 10.1021/acs.jafc.2c02107. Epub 2022 Jul 22.
7
Cloning and characterization of β-agarase AgaYT from Flammeovirga yaeyamensis strain YT.
J Biosci Bioeng. 2011 Sep;112(3):225-32. doi: 10.1016/j.jbiosc.2011.05.016. Epub 2011 Jun 28.
8
An agarase of glycoside hydrolase family 16 from marine bacterium Aquimarina agarilytica ZC1.
FEMS Microbiol Lett. 2017 Feb 1;364(4). doi: 10.1093/femsle/fnx012.
9
Cloning, expression, and biochemical characterization of a GH16 β-agarase AgaH71 from Pseudoalteromonas hodoensis H7.
Appl Biochem Biotechnol. 2015 Jan;175(2):733-47. doi: 10.1007/s12010-014-1294-3. Epub 2014 Oct 24.
10
Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans.
J Biol Chem. 2013 Sep 27;288(39):28078-88. doi: 10.1074/jbc.M113.491068. Epub 2013 Aug 6.

本文引用的文献

1
2
Agar degradation by microorganisms and agar-degrading enzymes.
Appl Microbiol Biotechnol. 2012 May;94(4):917-30. doi: 10.1007/s00253-012-4023-2. Epub 2012 Apr 19.
3
5
Cloning and characterization of β-agarase AgaYT from Flammeovirga yaeyamensis strain YT.
J Biosci Bioeng. 2011 Sep;112(3):225-32. doi: 10.1016/j.jbiosc.2011.05.016. Epub 2011 Jun 28.
6
Flammeovirga pacifica sp. nov., isolated from deep-sea sediment.
Int J Syst Evol Microbiol. 2012 Apr;62(Pt 4):937-941. doi: 10.1099/ijs.0.030676-0. Epub 2011 Jun 13.
8
Expression, crystallization and preliminary X-ray analysis of an anomeric inverting agarase from Pseudoalteromonas sp. CY24.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Dec 1;66(Pt 12):1635-9. doi: 10.1107/S174430911004114X. Epub 2010 Nov 26.
9
CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W576-81. doi: 10.1093/nar/gkq535. Epub 2010 Jun 11.
10
Expression, purification and preliminary X-ray diffraction analysis of the catalytic module of a beta-agarase from the flavobacterium Zobellia galactanivorans.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Apr 1;66(Pt 4):413-7. doi: 10.1107/S174430911000429X. Epub 2010 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验