Suppr超能文献

II 型激酶抑制剂对帕金森病相关 LRRK2 突变体 G2019S 表现出一种意想不到的抑制模式。

Type II kinase inhibitors show an unexpected inhibition mode against Parkinson's disease-linked LRRK2 mutant G2019S.

机构信息

Harvard NeuroDiscovery Center, Harvard University , 65 Landsdowne Street, #452, Cambridge, Massachusetts 02139, United States.

出版信息

Biochemistry. 2013 Mar 12;52(10):1725-36. doi: 10.1021/bi3012077. Epub 2013 Mar 1.

Abstract

A number of well-known type II inhibitors (ATP-noncompetitive) that bind kinases in their DFG-out conformation were tested against wild-type LRRK2 and the most common Parkinson's disease-linked mutation, G2019S. We found that traditional type II inhibitors exhibit surprising variability in their inhibition mechanism between the wild type (WT) and the G2019S mutant of LRRK2. The type II kinase inhibitors were found to work in an ATP-competitive fashion against the G2019S mutant, whereas they appear to follow the expected noncompetitive mechanism against WT. Because the G2019S mutation lies in the DXG motif (DYG in LRRK2 but DFG in most other kinases) of the activation loop, we explored the structural consequence of the mutation on loop dynamics using an enhanced sampling method called metadynamics. The simulations suggest that the G2019S mutation stabilizes the DYG-in state of LRRK2 through a series of hydrogen bonds, leading to an increase in the conformational barrier between the active and inactive forms of the enzyme and a relative stabilization of the active form. The conformational bias toward the active form of LRRK2 mutants has two primary consequences. (1) The mutant enzyme becomes hyperactive, a known contributor to the Parkinsonian phenotype, as a consequence of being "locked" into the activated state, and (2) the mutation creates an unusual allosteric pocket that can bind type II inhibitors but in an ATP-competitive fashion. Our results suggest that developing type II inhibitors, which are generally considered superior to type I inhibitors because of desirable selectivity profiles, might be especially challenging for the G2019S LRRK2 mutant.

摘要

一些知名的 II 型抑制剂(非 ATP 竞争性)在 DFG -out 构象下与激酶结合,我们对其野生型 LRRK2 和最常见的帕金森病相关突变 G2019S 进行了测试。我们发现,传统的 II 型抑制剂在其对野生型(WT)和 LRRK2 的 G2019S 突变体的抑制机制方面表现出惊人的可变性。发现 II 型激酶抑制剂对 G2019S 突变体以 ATP 竞争性方式起作用,而对 WT 则表现出预期的非竞争性机制。由于 G2019S 突变位于激活环的 DXG 基序(LRRK2 中的 DYG,但在大多数其他激酶中为 DFG)中,我们使用一种称为元动力学的增强采样方法探索了突变对环动力学的结构后果。模拟表明,G2019S 突变通过一系列氢键稳定了 LRRK2 的 DYG-in 状态,导致酶的活性和非活性形式之间的构象障碍增加,并使活性形式相对稳定。LRRK2 突变体向活性形式的构象偏向有两个主要后果。(1)由于被“锁定”在激活状态,突变酶变得过度活跃,这是帕金森表型的已知贡献者,(2)突变产生了一个不寻常的变构口袋,可以结合 II 型抑制剂,但以 ATP 竞争性方式结合。我们的结果表明,开发 II 型抑制剂,由于其理想的选择性特征,通常被认为优于 I 型抑制剂,对于 G2019S LRRK2 突变体来说可能特别具有挑战性。

相似文献

1
Type II kinase inhibitors show an unexpected inhibition mode against Parkinson's disease-linked LRRK2 mutant G2019S.
Biochemistry. 2013 Mar 12;52(10):1725-36. doi: 10.1021/bi3012077. Epub 2013 Mar 1.
3
Discovery of LRRK2 inhibitors using sequential in silico joint pharmacophore space (JPS) and ensemble docking.
Bioorg Med Chem Lett. 2015 Jul 1;25(13):2713-9. doi: 10.1016/j.bmcl.2015.04.027. Epub 2015 Apr 16.
4
Leucine-rich repeat kinase 2 mutants I2020T and G2019S exhibit altered kinase inhibitor sensitivity.
Biochem Biophys Res Commun. 2009 Jun 26;384(2):255-8. doi: 10.1016/j.bbrc.2009.04.098. Epub 2009 May 3.
6
Leucine-rich repeat kinase 2 inhibitors: a patent review (2006 - 2011).
Expert Opin Ther Pat. 2012 Dec;22(12):1415-26. doi: 10.1517/13543776.2012.729041. Epub 2012 Nov 6.
8
GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor.
Bioorg Med Chem Lett. 2012 Sep 1;22(17):5625-9. doi: 10.1016/j.bmcl.2012.06.104. Epub 2012 Jul 7.

引用本文的文献

1
Comparative Molecular Dynamics Reveals How LRRK2 Inhibitors Distinguish G2019S from Wild-Type.
Neurochem Res. 2025 Aug 13;50(4):259. doi: 10.1007/s11064-025-04520-w.
2
LRRK2 in Parkinson's disease: upstream regulation and therapeutic targeting.
Trends Mol Med. 2024 Oct;30(10):982-996. doi: 10.1016/j.molmed.2024.07.003. Epub 2024 Aug 16.
4
Genetic variations in and genes: Biochemical and clinical consequences in Parkinson disease.
Front Neurol. 2022 Aug 12;13:971252. doi: 10.3389/fneur.2022.971252. eCollection 2022.
5
Structural Insights and Development of LRRK2 Inhibitors for Parkinson's Disease in the Last Decade.
Genes (Basel). 2022 Aug 11;13(8):1426. doi: 10.3390/genes13081426.
6
Impact of Type II LRRK2 inhibitors on signaling and mitophagy.
Biochem J. 2021 Oct 15;478(19):3555-3573. doi: 10.1042/BCJ20210375.
7
The structure-function relationship of oncogenic LMTK3.
Sci Adv. 2020 Nov 13;6(46). doi: 10.1126/sciadv.abc3099. Print 2020 Nov.
8
Allosteric inhibition of LRRK2, where are we now.
Biochem Soc Trans. 2020 Oct 30;48(5):2185-2194. doi: 10.1042/BST20200424.
9
Structure of LRRK2 in Parkinson's disease and model for microtubule interaction.
Nature. 2020 Dec;588(7837):344-349. doi: 10.1038/s41586-020-2673-2. Epub 2020 Aug 19.
10
The dynamic switch mechanism that leads to activation of LRRK2 is embedded in the DFGψ motif in the kinase domain.
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):14979-14988. doi: 10.1073/pnas.1900289116. Epub 2019 Jul 10.

本文引用的文献

1
Small molecule kinase inhibitors for LRRK2 and their application to Parkinson's disease models.
ACS Chem Neurosci. 2012 Mar 21;3(3):151-60. doi: 10.1021/cn200117j. Epub 2012 Jan 18.
2
Roco kinase structures give insights into the mechanism of Parkinson disease-related leucine-rich-repeat kinase 2 mutations.
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10322-7. doi: 10.1073/pnas.1203223109. Epub 2012 Jun 11.
3
Discovery of selective LRRK2 inhibitors guided by computational analysis and molecular modeling.
J Med Chem. 2012 Jun 14;55(11):5536-45. doi: 10.1021/jm300452p. Epub 2012 Jun 1.
5
LRRK2 I2020T mutation is associated with tau pathology.
Parkinsonism Relat Disord. 2012 Aug;18(7):819-23. doi: 10.1016/j.parkreldis.2012.03.024. Epub 2012 Apr 22.
7
Sampling protein motion and solvent effect during ligand binding.
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1467-72. doi: 10.1073/pnas.1112181108. Epub 2012 Jan 11.
10
Effect of urea on the β-hairpin conformational ensemble and protein denaturation mechanism.
J Am Chem Soc. 2011 Nov 2;133(43):17200-6. doi: 10.1021/ja202849a. Epub 2011 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验