Suppr超能文献

截断型野生型富含亮氨酸重复激酶 2 及其 G2019S 突变体的动力学、机制和结构建模研究。

Kinetic, mechanistic, and structural modeling studies of truncated wild-type leucine-rich repeat kinase 2 and the G2019S mutant.

机构信息

Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States.

出版信息

Biochemistry. 2011 Nov 1;50(43):9399-408. doi: 10.1021/bi201173d. Epub 2011 Oct 7.

Abstract

Leucine-rich repeat kinase 2 (LRRK2), a large and complex protein that possesses two enzymatic properties, kinase and GTPase, is one of the major genetic factors in Parkinson's disease (PD). Here, we characterize the kinetic and catalytic mechanisms of truncated wild-type (t-wt) LRRK2 and its most common mutant, G2019S (t-G2019S), with a structural interpretation of the kinase domain. First, the substitution of threonine with serine in the LRRKtide peptide results in a much less efficient substrate as demonstrated by a 26-fold decrease in k(cat) and a 6-fold decrease in binding affinity. The significant decrease in k(cat) is attributed to a slow chemical transfer step as evidenced by the inverse solvent kinetic isotope effect in the proton inventory and pL (pH or pD)-dependent studies. The shape of the proton inventory and pL profile clearly signals the involvement of a general base (pK(a) = 7.5) in the catalysis with a low fractionation factor in the ground state. We report for the first time that the increased kinase activity of the G2019S mutant is substrate-dependent. Homology modeling of the kinase domain (open and closed forms) and structural analysis of the docked peptide substrates suggest that electrostatic interactions play an important role in substrate recognition, which is affected by G2019S and may directly influence the kinetic properties of the enzyme. Finally, the GTPase activity of the t-G2019S mutant was characterized, and the mutation modestly decreases GTPase activity without significantly affecting GTP binding affinity.

摘要

富含亮氨酸重复激酶 2(LRRK2)是一种大型且复杂的蛋白质,具有激酶和 GTPase 两种酶活性,是帕金森病(PD)的主要遗传因素之一。在这里,我们通过对激酶结构域的结构解释,对截短型野生型(t-wt)LRRK2 及其最常见的突变体 G2019S(t-G2019S)的动力学和催化机制进行了表征。首先,LRRKtide 肽中苏氨酸被丝氨酸取代,导致底物的效率大大降低,kcat 降低了 26 倍,结合亲和力降低了 6 倍。kcat 的显著降低归因于化学转移步骤缓慢,这可以通过质子库存的逆溶剂动力学同位素效应和 pL(pH 或 pD)依赖性研究来证明。质子库存和 pL 曲线的形状清楚地表明,在催化过程中涉及到一个广义碱(pK(a) = 7.5),在基态中的分馏因子较低。我们首次报道,G2019S 突变体的激酶活性增加是底物依赖性的。激酶结构域(开和闭形式)的同源建模和对接肽底物的结构分析表明,静电相互作用在底物识别中起着重要作用,这受到 G2019S 的影响,可能直接影响酶的动力学特性。最后,对 t-G2019S 突变体的 GTPase 活性进行了表征,该突变体的突变使 GTPase 活性略有降低,而对 GTP 结合亲和力的影响不大。

相似文献

3
Leucine-rich repeat kinase 2 (LRRK2)/PARK8 possesses GTPase activity that is altered in familial Parkinson's disease R1441C/G mutants.
J Neurochem. 2007 Oct;103(1):238-47. doi: 10.1111/j.1471-4159.2007.04743.x. Epub 2007 Jul 10.
5
GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2.
Hum Mol Genet. 2013 Mar 15;22(6):1140-56. doi: 10.1093/hmg/dds522. Epub 2012 Dec 13.
6
The R1441C mutation of LRRK2 disrupts GTP hydrolysis.
Biochem Biophys Res Commun. 2007 Jun 8;357(3):668-71. doi: 10.1016/j.bbrc.2007.04.006. Epub 2007 Apr 10.
8
The dual enzyme LRRK2 hydrolyzes GTP in both its GTPase and kinase domains in vitro.
Biochim Biophys Acta Proteins Proteom. 2017 Mar;1865(3):274-280. doi: 10.1016/j.bbapap.2016.12.001. Epub 2016 Dec 8.
9
Type II kinase inhibitors show an unexpected inhibition mode against Parkinson's disease-linked LRRK2 mutant G2019S.
Biochemistry. 2013 Mar 12;52(10):1725-36. doi: 10.1021/bi3012077. Epub 2013 Mar 1.
10
Mechanistic insight into the dominant mode of the Parkinson's disease-associated G2019S LRRK2 mutation.
Hum Mol Genet. 2007 Sep 1;16(17):2031-9. doi: 10.1093/hmg/ddm151. Epub 2007 Jun 20.

引用本文的文献

1
Targeting the Cysteine Redox Proteome in Parkinson's Disease: The Role of Glutathione Precursors and Beyond.
Antioxidants (Basel). 2023 Jun 30;12(7):1373. doi: 10.3390/antiox12071373.
3
-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases.
Antioxidants (Basel). 2022 Feb 18;11(2):416. doi: 10.3390/antiox11020416.
4
Models of Sporadic Parkinson's Disease.
Int J Mol Sci. 2018 Oct 26;19(11):3343. doi: 10.3390/ijms19113343.
5
Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease.
Neurobiol Aging. 2016 Dec;48:222.e1-222.e7. doi: 10.1016/j.neurobiolaging.2016.07.013. Epub 2016 Jul 28.
7
UV-dependent phosphorylation of COP9/signalosome in UV-induced apoptosis.
Oncol Rep. 2016 May;35(5):3101-5. doi: 10.3892/or.2016.4671. Epub 2016 Mar 11.
8
LRRK2 Pathways Leading to Neurodegeneration.
Curr Neurol Neurosci Rep. 2015 Jul;15(7):42. doi: 10.1007/s11910-015-0564-y.
9
LRRK2 pathobiology in Parkinson's disease.
J Neurochem. 2014 Dec;131(5):554-65. doi: 10.1111/jnc.12949. Epub 2014 Oct 10.
10
Unique functional and structural properties of the LRRK2 protein ATP-binding pocket.
J Biol Chem. 2014 Nov 21;289(47):32937-51. doi: 10.1074/jbc.M114.602318. Epub 2014 Sep 16.

本文引用的文献

1
Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease.
Nat Med. 2010 Sep;16(9):998-1000. doi: 10.1038/nm.2199. Epub 2010 Aug 22.
3
Development of a mechanism-based high-throughput screen assay for leucine-rich repeat kinase 2--discovery of LRRK2 inhibitors.
Anal Biochem. 2010 Sep 15;404(2):186-92. doi: 10.1016/j.ab.2010.05.033. Epub 2010 Jun 2.
4
GTPase activity plays a key role in the pathobiology of LRRK2.
PLoS Genet. 2010 Apr 8;6(4):e1000902. doi: 10.1371/journal.pgen.1000902.
6
MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2.
J Neurochem. 2010 Mar;112(6):1593-604. doi: 10.1111/j.1471-4159.2010.06568.x. Epub 2010 Jan 7.
10
The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro.
J Neurochem. 2009 May;109(4):959-68. doi: 10.1111/j.1471-4159.2009.06024.x. Epub 2009 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验