Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, D-20146 Hamburg, Germany.
J Med Chem. 2013 Mar 14;56(5):2016-28. doi: 10.1021/jm3016816. Epub 2013 Mar 1.
Crystal structure databases offer ample opportunities to derive small molecule conformation preferences, but the derived knowledge is not systematically applied in drug discovery research. We address this gap by a comprehensive and extendable expert system enabling quick assessment of the probability of a given conformation to occur. It is based on a hierarchical system of torsion patterns that cover a large part of druglike chemical space. Each torsion pattern has associated frequency histograms generated from CSD and PDB data and, derived from the histograms, traffic-light rules for frequently observed, rare, and highly unlikely torsion ranges. Structures imported into the corresponding software are annotated according to these rules. We present the concept behind the tree of torsion patterns, the design of an intuitive user interface for the management and usage of the torsion library, and we illustrate how the system helps analyze and understand conformation properties of substructures widely used in medicinal chemistry.
晶体结构数据库为推导小分子构象偏好提供了大量机会,但这些知识并未在药物发现研究中得到系统应用。我们通过一个全面且可扩展的专家系统来解决这一差距,该系统能够快速评估给定构象发生的概率。它基于一个层次化的扭转模式系统,涵盖了大部分类似药物的化学空间。每个扭转模式都有相关的频率直方图,这些直方图是从 CSD 和 PDB 数据生成的,并且根据直方图,为常见、罕见和极不可能的扭转范围制定了信号灯规则。导入到相应软件中的结构根据这些规则进行注释。我们介绍了扭转模式树背后的概念,以及用于管理和使用扭转库的直观用户界面的设计,并说明了该系统如何帮助分析和理解在药物化学中广泛使用的子结构的构象性质。