Suppr超能文献

将自动化多构象配体建模扩展至大环化合物和片段

Expanding Automated Multiconformer Ligand Modeling to Macrocycles and Fragments.

作者信息

Flowers Jessica, Echols Nathaniel, Correy Galen, Jaishankar Priya, Togo Takaya, Renslo Adam R, van den Bedem Henry, Fraser James S, Wankowicz Stephanie A

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA.

Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA.

出版信息

bioRxiv. 2024 Sep 23:2024.09.20.613996. doi: 10.1101/2024.09.20.613996.

Abstract

Small molecule ligands exhibit a diverse range of conformations in solution. Upon binding to a target protein, this conformational diversity is generally reduced. However, ligands can retain some degree of conformational flexibility even when bound to a receptor. In the Protein Data Bank (PDB), a small number of ligands have been modeled with distinct alternative conformations that are supported by X-ray crystallography density maps. However, the vast majority of structural models are fit to a single ligand conformation, potentially ignoring the underlying conformational heterogeneity present in the sample. We previously developed qFit-ligand to sample diverse ligand conformations and to select a parsimonious ensemble consistent with the density. While this approach indicated that many ligands populate alternative conformations, limitations in our sampling procedures often resulted in non-physical conformations and could not model complex ligands like macrocycles. Here, we introduce several improvements to qFit-ligand, including the use of routines within RDKit for stochastic conformational sampling. This new sampling method greatly enriches low energy conformations of small molecules and macrocycles. We further extended qFit-ligand to identify alternative conformations in PanDDA-modified density maps from high throughput X-ray fragment screening experiments. The new version of qFit-ligand improves fit to electron density and reduces torsional strain relative to deposited single conformer models and our previous version of qFit-ligand. These advances enhance the analysis of residual conformational heterogeneity present in ligand-bound structures, which can provide important insights for the rational design of therapeutic agents.

摘要

小分子配体在溶液中呈现出多种构象。在与靶蛋白结合后,这种构象多样性通常会降低。然而,即使与受体结合,配体仍可保留一定程度的构象灵活性。在蛋白质数据库(PDB)中,少数配体已通过X射线晶体学密度图支持的不同替代构象进行建模。然而,绝大多数结构模型都适合单一配体构象,这可能忽略了样品中潜在的构象异质性。我们之前开发了qFit-ligand来对多种配体构象进行采样,并选择与密度一致的简约集合。虽然这种方法表明许多配体存在替代构象,但我们采样程序的局限性常常导致非物理构象,并且无法对大环等复杂配体进行建模。在此,我们对qFit-ligand进行了多项改进,包括使用RDKit中的例程进行随机构象采样。这种新的采样方法极大地丰富了小分子和大环的低能量构象。我们进一步扩展了qFit-ligand,以在高通量X射线片段筛选实验的PanDDA修改密度图中识别替代构象。相对于已沉积的单一构象模型和我们之前版本的qFit-ligand,新版本的qFit-ligand提高了对电子密度的拟合度并减少了扭转应变。这些进展增强了对配体结合结构中存在的残余构象异质性的分析,这可为治疗药物的合理设计提供重要见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acba/12218756/cec3913d78b1/nihpp-2024.09.20.613996v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验