Suppr超能文献

用于分析双胞胎遗传和环境效应的双变量生存模型。

Bivariate survival models for analysis of genetic and environmental effects in twins.

作者信息

Thomas D C, Langholz B, Mack W, Floderus B

机构信息

Department of Preventive Medicine, University of Southern California, Los Angeles 90033-9987.

出版信息

Genet Epidemiol. 1990;7(2):121-35. doi: 10.1002/gepi.1370070203.

Abstract

Classic methods in genetics for the analysis of binary attributes, based on an assumption of a "threshold" on a normally distributed latent variable called "liability," estimate the strength of genetic and environmental effects from differences in correlations between relatives of differing genetic relatedness. Two problems that are not easily addressed by these methods are the need to take the age of onset into account (particularly in chronic diseases in which incidence rates vary considerably with age and the lengths of time at risk can vary between individuals) and the desirability of incorporating measured covariates (genetic or environmental). The standard methods of cohort analysis used in epidemiology allow for both of these features, but until recently have been restricted to independent individuals. Recent developments in survival analysis have extended the widely used "proportional hazards" model of Cox by the addition of latent variable, epsilon, reflecting the shared susceptibility of related subjects because of their shared genes or shared environment. We show how this approach can be combined with more traditional models of gene-environment interaction to allow the main effects of measured genetic markers and environmental variables to be estimated, as well as the residual variance of genetic and environment and their interactions. The approaches are applied to a cohort of female twin births in Sweden from 1886 to 1958, linked with the Swedish cancer registry from 1961 to 1982.

摘要

遗传学中用于分析二元属性的经典方法,基于一个关于名为“易感性”的正态分布潜在变量上的“阈值”假设,通过不同遗传相关性亲属之间相关性的差异来估计遗传和环境效应的强度。这些方法不容易解决的两个问题是需要考虑发病年龄(特别是在发病率随年龄有很大差异且个体的风险暴露时间长度可能不同的慢性疾病中)以及纳入测量的协变量(遗传或环境)的必要性。流行病学中使用的队列分析标准方法具备这两个特征,但直到最近都仅限于独立个体。生存分析的最新进展通过添加潜在变量ε扩展了广泛使用的Cox“比例风险”模型,该潜在变量反映了相关受试者由于共享基因或共享环境而具有的共同易感性。我们展示了如何将这种方法与更传统的基因 - 环境相互作用模型相结合,以估计测量的遗传标记和环境变量的主要效应,以及遗传和环境及其相互作用的残差方差。这些方法应用于1886年至1958年瑞典女性双胞胎出生队列,并与1961年至1982年的瑞典癌症登记处相链接。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验