Adolf Butenandt Institut, Institut für Molekularbiologie, Ludwig Maximilians-Universität, München, Germany.
PLoS Genet. 2013;9(1):e1003188. doi: 10.1371/journal.pgen.1003188. Epub 2013 Jan 31.
Post-translational modifications (PTMs) of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases) are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES) cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved between amphibians and mammals, in which H4K20me3-dependent restriction of specific POU-V genes directs cell fate decisions, when embryonic cells exit the pluripotent state.
组蛋白的翻译后修饰(PTMs)在调节基因表达方面发挥着基本作用。在发育过程中,未知机制将一组 PTM 约束成组合模式,从而促进未分化的胚胎细胞向分化的体细胞谱系转变。人们已经详细研究了抑制性组蛋白修饰,如 H3K9me3 或 H3K27me3,但 H4K20me3 在发育中的作用目前尚不清楚。在这里,我们发现非洲爪蟾 Suv4-20h1 和 h2 组蛋白甲基转移酶(HMTases)对于神经外胚层的诱导和分化是必不可少的。通过针对这两种 HMTases 的 morpholino 进行基因敲低,导致控制神经诱导的基因的选择性和特异性下调,从而有效地阻止神经外胚层的分化。全转录组分析支持这样的观点,即这些效应是由于特定基因的转录失调而不是广泛的、多效性的效应引起的。有趣的是,morphant 胚胎不能抑制与 Oct4 相关的非洲爪蟾基因 Oct-25。我们验证了 Oct-25 是 xSu4-20h 酶介导的基因抑制的直接靶标,通过染色质免疫沉淀表明,它在正常情况下被修饰在启动子下游的 H4K20me3 标记,但在双 morphant 胚胎中则没有。由于 Oct-25 蛋白的敲低显著挽救了 xSuv4-20h 双 morphant 胚胎的神经分化缺陷,因此我们得出结论,Suv4-20h 酶和 Oct-25 之间的上位性关系控制了从多能性到分化能力强的神经细胞的转变。与非洲爪蟾的结果一致,与野生型相比,小鼠 Suv4-20h1/h2 双敲除胚胎干细胞(DKO ES)细胞在 EB 形成前后具有更高的 Oct4 蛋白水平,并且在体外分化能力方面表现出受损和偏向性,当与正常 ES 细胞相比时。总的来说,这些结果表明,在两栖动物和哺乳动物之间存在一种调节机制,其中 H4K20me3 依赖性限制特定的 POU-V 基因指导细胞命运决定,当胚胎细胞退出多能状态时。