Suppr超能文献

供水管网中污染物事件检测的动态阈值方案。

A dynamic thresholds scheme for contaminant event detection in water distribution systems.

机构信息

Faculty of Civil and Environmental Engineering, Technion - IIT, Haifa 32000, Israel.

出版信息

Water Res. 2013 Apr 1;47(5):1899-908. doi: 10.1016/j.watres.2013.01.017. Epub 2013 Jan 23.

Abstract

In this study, a dynamic thresholds scheme is developed and demonstrated for contamination event detection in water distribution systems. The developed methodology is based on a recently published article of the authors (Perelman et al., 2012). Event detection in water supply systems is aimed at disclosing abnormal hydraulic or water quality events by exploring the time series behavior of routine hydraulic (e.g., flow, pressure) and water quality measurements (e.g., residual chlorine, pH, turbidity). While event detection raises alerts to the possibility of an event occurrence, it does not relate to origins, thus an event may be hydraulically-driven, as a consequence of problems like sudden leakages or pump/pipe malfunctions. Most events, however, are related to deliberate, accidental, or natural contamination intrusions. The developed methodology herein is based on off-line and on-line stages. During the off-line stage, a genetic algorithm (GA) is utilized for tuning five decision variables: positive and negative filters, positive and negative dynamic thresholds, and window size. During the on-line stage, a recursively Bayes' rule is invoked, employing the five decision variables, for real time on-line event detection. Using the same database, the proposed methodology is compared to Perelman et al. (2012), showing considerably improved detection ability. Metadata and the computer code are provided as Supplementary material.

摘要

在这项研究中,开发并展示了一种用于水分配系统中污染事件检测的动态阈值方案。该方法基于作者最近发表的一篇文章(Perelman 等人,2012 年)。供水系统中的事件检测旨在通过探索常规水力(例如,流量、压力)和水质测量(例如,余氯、pH 值、浊度)的时间序列行为来揭示异常水力或水质事件。虽然事件检测会发出事件发生的可能性警报,但它与事件的起源无关,因此事件可能是由突然的泄漏或泵/管道故障等问题引起的水力驱动。然而,大多数事件都与故意、意外或自然污染入侵有关。本文所开发的方法基于离线和在线阶段。在离线阶段,使用遗传算法 (GA) 来调整五个决策变量:正滤波器和负滤波器、正动态阈值和负动态阈值以及窗口大小。在在线阶段,调用递归贝叶斯规则,使用这五个决策变量进行实时在线事件检测。使用相同的数据库,将提出的方法与 Perelman 等人(2012 年)进行比较,显示出明显提高的检测能力。元数据和计算机代码作为补充材料提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验