Institut d'Investigació en Ciènces de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain.
J Phys Chem B. 2013 Feb 28;117(8):2339-47. doi: 10.1021/jp311861p. Epub 2013 Feb 13.
This study reports the carbon acidities of Cα and C4′ atoms in the Schiff bases of pyridoxal-5′-phosphate (PLP) and pyridoxamine-5′-phosphate (PMP) complexed with several biologically available metal ions (Mg2+, Ni2+, Zn2+, Cu2+, Al3+, and Fe3+). Density functional theory calculations were carried out to determine the free energies of proton exchange reactions of a set of 18 carbon acids and a Schiff base used as a reference species. The experimental pK(a) values of such carbon acids were used to calibrate the computed free energies in a range of 30 pK(a) units. Eventually, the pK(a)s of the chelates were obtained by calculating the corresponding free energies against the same reference species and by considering the previous calibration. The carbon acidity of Cα in the chelates of Mg2+, Ni2+, Zn2+, and Cu2+ varies between pK(a) 22 and pK(a) 13 whereas the pK(a) values of C4′ range between 18 and 7. Chelation of trivalent metals Al3+ and Fe3+ causes further decrease of the pK(a) values of Cα and C4′ down to 10 and 5, respectively. The results highlight the efficiency of the combined action of Schiff base formation and metal chelation to activate the Cα carbon of amino acids (pK(a) 29 for zwitterionic alanine). Our results explain that the experimental increase of transamination rates by Zn2+ chelation is due to stabilization of the reactive Schiff base species with respect to the free ligand under physiological pH conditions. However, the increase in reactivity for transamination due to Cu2+ and Al3+ chelation is mostly due to C–H ligand activation. Each metal ion activates the Cα and C4′ carbon atoms to a different extent, which can be exploited to favor specific reactions on the amino acids in aqueous solution. Metal chelation hinders both intramolecular and intermolecular proton-transfer reactions of the imino, phenol, and carboxylate groups. This is the only apparent inconvenience of metal complexes in enzymatic reactions, which, in turn, proposes their consideration for enzyme inhibition.
本研究报告了吡哆醛-5′-磷酸(PLP)和吡哆胺-5′-磷酸(PMP)与几种生物可利用的金属离子(Mg2+、Ni2+、Zn2+、Cu2+、Al3+和 Fe3+)形成的希夫碱中 Cα 和 C4′原子的碳酸酸度。通过密度泛函理论计算,确定了一组 18 种碳酸和希夫碱作为参考物质的质子交换反应的自由能。实验测定的此类碳酸的 pK(a)值用于在 30 pK(a)单位的范围内校准计算出的自由能。最终,通过计算与相同参考物质相对应的相应自由能,并考虑到先前的校准,获得了配合物的 pK(a)值。Mg2+、Ni2+、Zn2+和 Cu2+配合物中 Cα 的碳酸酸度在 pK(a) 22 到 pK(a) 13 之间变化,而 C4′的 pK(a)值在 18 到 7 之间变化。三价金属 Al3+和 Fe3+的螯合作用导致 Cα 和 C4′的 pK(a)值进一步降低至 10 和 5。结果突出了希夫碱形成和金属螯合的联合作用对激活氨基酸的 Cα 碳(两性离子丙氨酸的 pK(a) 29)的效率。我们的结果解释了 Zn2+螯合作用导致转氨速率增加的实验现象,这是由于在生理 pH 条件下,与游离配体相比,反应性希夫碱物种得到了稳定。然而,Cu2+和 Al3+螯合作用导致转氨反应性增加主要是由于 C–H 配体的活化。每个金属离子对 Cα 和 C4′碳原子的激活程度不同,可以利用这一点来促进水溶液中氨基酸的特定反应。金属螯合作用阻碍了亚氨基、苯酚和羧酸盐基团的分子内和分子间质子转移反应。这是金属配合物在酶反应中的唯一明显不便之处,反过来,这也促使人们考虑将其用于酶抑制。