Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney New South Wales 2006, Australia.
Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney New South Wales 2006, Australia.
J Biol Chem. 2013 Mar 22;288(12):8250-8257. doi: 10.1074/jbc.M112.441022. Epub 2013 Feb 7.
The ASCTs (alanine, serine, and cysteine transporters) belong to the solute carrier family 1 (SLC1), which also includes the human glutamate transporters (excitatory amino acid transporters, EAATs) and the prokaryotic aspartate transporter GltPh. Despite the high degree of amino acid sequence identity between family members, ASCTs function quite differently from the EAATs and GltPh. The aim of this study was to mutate ASCT1 to generate a transporter with functional properties of the EAATs and GltPh, to further our understanding of the structural basis for the different transport mechanisms of the SLC1 family. We have identified three key residues involved in determining differences between ASCT1, the EAATs and GltPh. ASCT1 transporters containing the mutations A382T, T459R, and Q386E were expressed in Xenopus laevis oocytes, and their transport and anion channel functions were investigated. A382T and T459R altered the substrate selectivity of ASCT1 to allow the transport of acidic amino acids, particularly l-aspartate. The combination of A382T and T459R within ASCT1 generates a transporter with a similar profile to that of GltPh, with preference for l-aspartate over l-glutamate. Interestingly, the amplitude of the anion conductance activated by the acidic amino acids does not correlate with rates of transport, highlighting the distinction between these two processes. Q386E impaired the ability of ASCT1 to bind acidic amino acids at pH 5.5; however, this was reversed by the additional mutation A382T. We propose that these residues differences in TM7 and TM8 combine to determine differences in substrate selectivity between members of the SLC1 family.
ASCTs(丙氨酸、丝氨酸和半胱氨酸转运体)属于溶质载体家族 1(SLC1),其中还包括人类谷氨酸转运体(兴奋性氨基酸转运体,EAATs)和原核天冬氨酸转运体 GltPh。尽管家族成员的氨基酸序列同一性很高,但 ASCTs 的功能与 EAATs 和 GltPh 有很大不同。本研究的目的是突变 ASCT1 以产生具有 EAATs 和 GltPh 功能特性的转运体,以进一步了解 SLC1 家族不同转运机制的结构基础。我们已经确定了三个关键残基,这些残基参与决定 ASCT1、EAATs 和 GltPh 之间的差异。在非洲爪蟾卵母细胞中表达含有突变 A382T、T459R 和 Q386E 的 ASCT1 转运体,并研究了它们的转运和阴离子通道功能。A382T 和 T459R 改变了 ASCT1 的底物选择性,使其能够转运酸性氨基酸,特别是 l-天冬氨酸。ASCT1 内的 A382T 和 T459R 组合产生了一种转运体,其特征与 GltPh 相似,对 l-天冬氨酸的偏好超过 l-谷氨酸。有趣的是,酸性氨基酸激活的阴离子电导幅度与转运速率不相关,突出了这两个过程之间的区别。Q386E 损害了 ASCT1 在 pH 5.5 时结合酸性氨基酸的能力;然而,这种情况被额外的突变 A382T 逆转。我们提出,TM7 和 TM8 中的这些残基差异结合起来决定了 SLC1 家族成员之间的底物选择性差异。