Suppr超能文献

丙氨酰-丝氨酰-胱氨酸转运体 1 与其他谷氨酸转运体家族成员之间功能差异的分子决定因素。

Molecular determinants for functional differences between alanine-serine-cysteine transporter 1 and other glutamate transporter family members.

机构信息

Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney New South Wales 2006, Australia.

Discipline of Pharmacology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney New South Wales 2006, Australia.

出版信息

J Biol Chem. 2013 Mar 22;288(12):8250-8257. doi: 10.1074/jbc.M112.441022. Epub 2013 Feb 7.

Abstract

The ASCTs (alanine, serine, and cysteine transporters) belong to the solute carrier family 1 (SLC1), which also includes the human glutamate transporters (excitatory amino acid transporters, EAATs) and the prokaryotic aspartate transporter GltPh. Despite the high degree of amino acid sequence identity between family members, ASCTs function quite differently from the EAATs and GltPh. The aim of this study was to mutate ASCT1 to generate a transporter with functional properties of the EAATs and GltPh, to further our understanding of the structural basis for the different transport mechanisms of the SLC1 family. We have identified three key residues involved in determining differences between ASCT1, the EAATs and GltPh. ASCT1 transporters containing the mutations A382T, T459R, and Q386E were expressed in Xenopus laevis oocytes, and their transport and anion channel functions were investigated. A382T and T459R altered the substrate selectivity of ASCT1 to allow the transport of acidic amino acids, particularly l-aspartate. The combination of A382T and T459R within ASCT1 generates a transporter with a similar profile to that of GltPh, with preference for l-aspartate over l-glutamate. Interestingly, the amplitude of the anion conductance activated by the acidic amino acids does not correlate with rates of transport, highlighting the distinction between these two processes. Q386E impaired the ability of ASCT1 to bind acidic amino acids at pH 5.5; however, this was reversed by the additional mutation A382T. We propose that these residues differences in TM7 and TM8 combine to determine differences in substrate selectivity between members of the SLC1 family.

摘要

ASCTs(丙氨酸、丝氨酸和半胱氨酸转运体)属于溶质载体家族 1(SLC1),其中还包括人类谷氨酸转运体(兴奋性氨基酸转运体,EAATs)和原核天冬氨酸转运体 GltPh。尽管家族成员的氨基酸序列同一性很高,但 ASCTs 的功能与 EAATs 和 GltPh 有很大不同。本研究的目的是突变 ASCT1 以产生具有 EAATs 和 GltPh 功能特性的转运体,以进一步了解 SLC1 家族不同转运机制的结构基础。我们已经确定了三个关键残基,这些残基参与决定 ASCT1、EAATs 和 GltPh 之间的差异。在非洲爪蟾卵母细胞中表达含有突变 A382T、T459R 和 Q386E 的 ASCT1 转运体,并研究了它们的转运和阴离子通道功能。A382T 和 T459R 改变了 ASCT1 的底物选择性,使其能够转运酸性氨基酸,特别是 l-天冬氨酸。ASCT1 内的 A382T 和 T459R 组合产生了一种转运体,其特征与 GltPh 相似,对 l-天冬氨酸的偏好超过 l-谷氨酸。有趣的是,酸性氨基酸激活的阴离子电导幅度与转运速率不相关,突出了这两个过程之间的区别。Q386E 损害了 ASCT1 在 pH 5.5 时结合酸性氨基酸的能力;然而,这种情况被额外的突变 A382T 逆转。我们提出,TM7 和 TM8 中的这些残基差异结合起来决定了 SLC1 家族成员之间的底物选择性差异。

相似文献

2
Na+ interactions with the neutral amino acid transporter ASCT1.
J Biol Chem. 2014 Jun 20;289(25):17468-79. doi: 10.1074/jbc.M114.565242. Epub 2014 May 7.
3
Functional and Kinetic Comparison of Alanine Cysteine Serine Transporters ASCT1 and ASCT2.
Biomolecules. 2022 Jan 11;12(1):113. doi: 10.3390/biom12010113.
4
Molecular Determinants of Substrate Specificity in Sodium-coupled Glutamate Transporters.
J Biol Chem. 2015 Nov 27;290(48):28988-96. doi: 10.1074/jbc.M115.682666. Epub 2015 Oct 16.
5
The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.
J Neurochem. 2010 Jul;114(2):565-75. doi: 10.1111/j.1471-4159.2010.06796.x. Epub 2010 May 6.
7
Novel dicarboxylate selectivity in an insect glutamate transporter homolog.
PLoS One. 2013 Aug 7;8(8):e70947. doi: 10.1371/journal.pone.0070947. eCollection 2013.
9
Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter.
J Biol Chem. 1996 Jun 21;271(25):14883-90. doi: 10.1074/jbc.271.25.14883.
10
Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii.
J Biol Chem. 2009 Jun 26;284(26):17540-8. doi: 10.1074/jbc.M109.005926. Epub 2009 Apr 20.

引用本文的文献

1
Evolutionary analysis reveals the origin of sodium coupling in glutamate transporters.
Nat Struct Mol Biol. 2025 Aug 25. doi: 10.1038/s41594-025-01652-z.
2
Aspartate in the Brain: A Review.
Neurochem Res. 2025 Jun 12;50(3):199. doi: 10.1007/s11064-025-04454-3.
3
Evolutionary analysis reveals the origin of sodium coupling in glutamate transporters.
bioRxiv. 2024 Apr 25:2023.12.03.569786. doi: 10.1101/2023.12.03.569786.
4
N-Acetylcysteine and Its Immunomodulatory Properties in Humans and Domesticated Animals.
Antioxidants (Basel). 2023 Oct 16;12(10):1867. doi: 10.3390/antiox12101867.
5
Expected and Unexpected Effects of Pharmacological Antioxidants.
Int J Mol Sci. 2023 May 26;24(11):9303. doi: 10.3390/ijms24119303.
6
Do Amino Acid Antiporters Have Asymmetric Substrate Specificity?
Biomolecules. 2023 Feb 6;13(2):301. doi: 10.3390/biom13020301.
7
Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs).
Pharmaceutics. 2022 Jun 10;14(6):1234. doi: 10.3390/pharmaceutics14061234.
8
Increased Expression of Syncytin-1 in Skeletal Muscle of Humans With Increased Body Mass Index.
Front Physiol. 2022 Apr 4;13:858341. doi: 10.3389/fphys.2022.858341. eCollection 2022.
9
Rational design of ASCT2 inhibitors using an integrated experimental-computational approach.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2104093118.
10
The Human SLC1A5 Neutral Amino Acid Transporter Catalyzes a pH-Dependent Glutamate/Glutamine Antiport, as Well.
Front Cell Dev Biol. 2020 Jul 8;8:603. doi: 10.3389/fcell.2020.00603. eCollection 2020.

本文引用的文献

1
Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1.
PLoS One. 2012;7(3):e33058. doi: 10.1371/journal.pone.0033058. Epub 2012 Mar 13.
3
Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101.
J Biol Chem. 2010 Jun 4;285(23):17725-33. doi: 10.1074/jbc.M110.121798. Epub 2010 Apr 8.
4
Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii.
J Biol Chem. 2009 Jun 26;284(26):17540-8. doi: 10.1074/jbc.M109.005926. Epub 2009 Apr 20.
5
Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter.
Nature. 2007 Jan 25;445(7126):387-93. doi: 10.1038/nature05455. Epub 2007 Jan 17.
6
Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime?
Semin Cancer Biol. 2005 Aug;15(4):254-66. doi: 10.1016/j.semcancer.2005.04.005.
8
Structure of a glutamate transporter homologue from Pyrococcus horikoshii.
Nature. 2004 Oct 14;431(7010):811-8. doi: 10.1038/nature03018.
9
The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway.
J Biol Chem. 2004 May 14;279(20):20742-51. doi: 10.1074/jbc.M304433200. Epub 2004 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验