Department of Pharmacology, University of Sydney, Sydney, New South Wales, Australia.
J Neurochem. 2010 Jul;114(2):565-75. doi: 10.1111/j.1471-4159.2010.06796.x. Epub 2010 May 6.
Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and extracellular glutamate levels are controlled by a family of transporters known as excitatory amino acid transporters (EAATs). The EAATs transport glutamate and aspartate with similar micromolar affinities and this transport is coupled to the movement of Na(+), K(+), and H(+). The crystal structure of a prokaryotic homologue of the EAATs, aspartate transporter from Pyrococcus horokoshii (Glt(Ph)), has yielded important insights into the architecture of this transporter family. Glt(Ph) is a Na(+)-dependent transporter that has significantly higher affinity for aspartate over glutamate and is not coupled to H(+) or K(+). The highly conserved carboxy-terminal domains of the EAATs and Glt(Ph) contain the substrate and ion binding sites, however, there are a couple of striking differences in this region that we have investigated to better understand the transport mechanism. An arginine residue is in close proximity to the substrate binding site of both Glt(Ph) and the EAATs, but is located in transmembrane domain (TM) 8 in the EAATs and hairpin loop 1 (HP1) of Glt(Ph). Here we report that the position of this arginine residue can explain some of the functional differences observed between the EAATs and Glt(Ph). Moving the arginine residue from TM8 to HP1 in EAAT1 results in a transporter that has significantly increased affinity for both glutamate and aspartate and is K(+) independent. Conversely, moving the arginine residue from HP1 to TM8 in Glt(Ph) results in a transporter that has reduced affinity for aspartate.
谷氨酸是哺乳动物中枢神经系统中主要的兴奋性神经递质,细胞外谷氨酸水平由一类称为兴奋性氨基酸转运体(EAATs)的转运体家族控制。EAATs 以相似的微摩尔亲和力转运谷氨酸和天冬氨酸,这种转运与 Na(+)、K(+)和 H(+)的移动相偶联。一种原核同源物,即来自 Pyrococcus horokoshii 的天冬氨酸转运体(Glt(Ph))的晶体结构,为该转运体家族的结构提供了重要的见解。Glt(Ph) 是一种依赖 Na(+)的转运体,对天冬氨酸的亲和力明显高于谷氨酸,并且不与 H(+)或 K(+)偶联。EAATs 和 Glt(Ph) 的高度保守的羧基末端结构域包含底物和离子结合位点,但是在这个区域存在一些明显的差异,我们已经对其进行了研究,以更好地理解转运机制。一个精氨酸残基与 Glt(Ph)和 EAATs 的底物结合位点都非常接近,但在 EAATs 中位于跨膜域(TM)8 中,而在 Glt(Ph)中位于发夹环 1(HP1)中。在这里,我们报告说,这个精氨酸残基的位置可以解释 EAATs 和 Glt(Ph) 之间观察到的一些功能差异。将 EAAT1 中的精氨酸残基从 TM8 移动到 HP1 会导致转运体对谷氨酸和天冬氨酸的亲和力显著增加,并且对 K(+)不依赖。相反,将 Glt(Ph) 中的精氨酸残基从 HP1 移动到 TM8 会导致转运体对天冬氨酸的亲和力降低。