Suppr超能文献

描述大脑区域和脑网络的功能多样性。

Describing functional diversity of brain regions and brain networks.

机构信息

Department of Psychology, Franklin & Marshall College, USA.

出版信息

Neuroimage. 2013 Jun;73:50-8. doi: 10.1016/j.neuroimage.2013.01.071. Epub 2013 Feb 8.

Abstract

Despite the general acceptance that functional specialization plays an important role in brain function, there is little consensus about its extent in the brain. We sought to advance the understanding of this question by employing a data-driven approach that capitalizes on the existence of large databases of neuroimaging data. We quantified the diversity of activation in brain regions as a way to characterize the degree of functional specialization. To do so, brain activations were classified in terms of task domains, such as vision, attention, and language, which determined a region's functional fingerprint. We found that the degree of diversity varied considerably across the brain. We also quantified novel properties of regions and of networks that inform our understanding of several task-positive and task-negative networks described in the literature, including defining functional fingerprints for entire networks and measuring their functional assortativity, namely the degree to which they are composed of regions with similar functional fingerprints. Our results demonstrate that some brain networks exhibit strong assortativity, whereas other networks consist of relatively heterogeneous parts. In sum, rather than characterizing the contributions of individual brain regions using task-based functional attributions, we instead quantified their dispositional tendencies, and related those to each region's affiliative properties in both task-positive and task-negative contexts.

摘要

尽管人们普遍认为功能特化在大脑功能中起着重要作用,但对于大脑中功能特化的程度仍存在争议。我们试图通过采用一种数据驱动的方法来推进对这个问题的理解,这种方法利用了大量神经影像学数据数据库的存在。我们通过量化大脑区域激活的多样性来描述功能特化的程度。为此,我们根据任务领域(如视觉、注意力和语言)对大脑激活进行分类,这决定了一个区域的功能特征。我们发现,大脑中的多样性程度差异很大。我们还量化了区域和网络的新特性,这些特性有助于我们理解文献中描述的几个任务正性和任务负性网络,包括为整个网络定义功能特征指纹,并测量它们的功能聚类程度,即它们由具有相似功能特征指纹的区域组成的程度。我们的研究结果表明,一些大脑网络表现出很强的聚类性,而其他网络则由相对异质的部分组成。总之,我们不是使用基于任务的功能归因来描述个别大脑区域的贡献,而是量化了它们的倾向性,并将这些倾向性与每个区域在任务正性和任务负性环境中的亲和性特性联系起来。

相似文献

1
Describing functional diversity of brain regions and brain networks.描述大脑区域和脑网络的功能多样性。
Neuroimage. 2013 Jun;73:50-8. doi: 10.1016/j.neuroimage.2013.01.071. Epub 2013 Feb 8.
4
Role of the anterior insula in task-level control and focal attention.前脑岛在任务级控制和焦点注意中的作用。
Brain Struct Funct. 2010 Jun;214(5-6):669-80. doi: 10.1007/s00429-010-0260-2. Epub 2010 May 29.
7
Brain connectivity and visual attention.脑连接与视觉注意。
Brain Connect. 2013;3(4):317-38. doi: 10.1089/brain.2012.0139. Epub 2013 Jun 8.
9
Understanding brain networks and brain organization.理解脑网络与脑组织。
Phys Life Rev. 2014 Sep;11(3):400-35. doi: 10.1016/j.plrev.2014.03.005. Epub 2014 Apr 18.

引用本文的文献

6
Transplanting old organs promotes senescence in young recipients.移植旧器官会促进年轻受者的衰老。
Am J Transplant. 2024 Mar;24(3):391-405. doi: 10.1016/j.ajt.2023.10.013. Epub 2023 Oct 31.
7
Why multiple intelligences theory is a neuromyth.为何多元智能理论是一个神经科学神话。
Front Psychol. 2023 Aug 28;14:1217288. doi: 10.3389/fpsyg.2023.1217288. eCollection 2023.
10
Why art? The role of arts in arts and health.为什么是艺术?艺术在艺术与健康中的作用。
Front Psychol. 2023 Mar 22;14:765019. doi: 10.3389/fpsyg.2023.765019. eCollection 2023.

本文引用的文献

1
Measuring biological diversity.衡量生物多样性。
Curr Biol. 2021 Oct 11;31(19):R1174-R1177. doi: 10.1016/j.cub.2021.07.049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验