Suppr超能文献

大规模水下声网络信号路径损耗的统计建模。

Statistical modeling of large-scale signal path loss in underwater acoustic networks.

机构信息

Physics and Computer Engineering Department, Miguel Hernandez University, 03202 Elche, Alicante, Spain.

出版信息

Sensors (Basel). 2013 Feb 8;13(2):2279-94. doi: 10.3390/s130202279.

Abstract

In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation), we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc.), an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc.).

摘要

在水下声信道中,传播条件会随时间发生变化,导致接收信号强度偏离确定性传播模型预测的标称值。为了在这种条件下(例如功率分配)进行大规模系统设计,我们开发了一种统计传播模型,其中传输损耗被视为随机变量。通过对声场进行重复计算,使用射线追踪对一组变化的环境条件(表面高度、波活动、标称位置周围的小节点位移等)进行处理,我们编制了一组传输损耗,并随后用于推断统计模型参数。我们发现与对数正态分布有很好的一致性,其均值遵循对数距离增加的规律,而方差在给定部署位置的一定范围内的节点间距离内似乎是恒定的。该统计模型对于更高层次的系统规划很有用,在这种规划中需要进行仿真来评估候选网络协议在各种资源分配策略下的性能,即确定实现期望性能(连接性、吞吐量、可靠性等)所需的发射功率和带宽分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1244/3649363/e70bc26924e4/sensors-13-02279f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验