Suppr超能文献

生物信息学中MapReduce框架操作的调查。

Survey of MapReduce frame operation in bioinformatics.

作者信息

Zou Quan, Li Xu-Bin, Jiang Wen-Rui, Lin Zi-Yu, Li Gui-Lin, Chen Ke

出版信息

Brief Bioinform. 2014 Jul;15(4):637-47. doi: 10.1093/bib/bbs088. Epub 2013 Feb 7.

Abstract

Bioinformatics is challenged by the fact that traditional analysis tools have difficulty in processing large-scale data from high-throughput sequencing. The open source Apache Hadoop project, which adopts the MapReduce framework and a distributed file system, has recently given bioinformatics researchers an opportunity to achieve scalable, efficient and reliable computing performance on Linux clusters and on cloud computing services. In this article, we present MapReduce frame-based applications that can be employed in the next-generation sequencing and other biological domains. In addition, we discuss the challenges faced by this field as well as the future works on parallel computing in bioinformatics.

摘要

传统分析工具在处理来自高通量测序的大规模数据时存在困难,这给生物信息学带来了挑战。开源的Apache Hadoop项目采用MapReduce框架和分布式文件系统,最近为生物信息学研究人员提供了一个机会,使其能够在Linux集群和云计算服务上实现可扩展、高效且可靠的计算性能。在本文中,我们展示了基于MapReduce框架的应用程序,这些应用程序可用于下一代测序及其他生物领域。此外,我们还讨论了该领域面临的挑战以及生物信息学中并行计算的未来工作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验