Physical Chemistry, Chemnitz University of Technology, Strasse der Nationen 62, 09111 Chemnitz, Germany.
J Am Chem Soc. 2013 Mar 20;135(11):4380-8. doi: 10.1021/ja311785f. Epub 2013 Mar 7.
We prepared bicontinuous composite membranes comprising zeolite A particles. The particles form a monolayer which is embedded in a polymer sheet in such a way that each particle penetrates both surfaces of the polymer sheet. Preparation was done via "float casting"; a mixture of hydrophobized zeolite particles and an appropriate volume of a nonvolatile polymerizable organic liquid monomer was applied onto a water surface. The monomer was solidified via photopolymerization to form the above-mentioned membrane. In as-prepared state (without extensive drying), this membrane is permeable for water vapor (in case of zeolite 4A permeance = 8 × 10(-9) mol m(-2) s(-1) Pa(-1), permeability = 1.65 × 10(-14) mol m(-1) s(-1) Pa(-1) = 49 barrer) but impermeable for nitrogen (permeance below detection limit of 5 × 10(-12) mol m(-2) s(-1) Pa(-1), permeability below detection limit of 1 × 10(-17) mol m(-1) s(-1) Pa(-1) = 0.03 barrer). The permeance for water vapor increases with increasing pore size of the zeolite (in case of zeolite 5A, all other parameters being unchanged, permeance = 12 × 10(-9) mol m(-2) s(-1) Pa(-1), permeability = 2.4 × 10(-14) mol m(-1) s(-1) Pa(-1) = 72 barrer). These observations indicate that the water molecules are predominantly transported through the zeolite channels and at the same time block the passage of other molecules. The impermeability for nitrogen in as-prepared state indicates a low amount of defects that are not blocked by water. Furthermore, the composite nature of the membrane gives rise to a reduced brittleness; membranes can be handled manually without support structure and thus might be promising candidates for separation technology.
我们制备了包含沸石 A 颗粒的双连续复合膜。这些颗粒形成单层,以这样的方式嵌入聚合物片材中,即每个颗粒穿透聚合物片材的两个表面。制备是通过“浮铸”进行的;将疏水性沸石颗粒和适当体积的不可挥发可聚合有机液体单体混合物施加到水面上。单体通过光聚合固化以形成上述膜。在制备状态下(未经广泛干燥),该膜对水蒸气具有渗透性(对于沸石 4A,渗透率=8×10(-9)mol m(-2) s(-1) Pa(-1),渗透率=1.65×10(-14)mol m(-1) s(-1) Pa(-1)=49 巴雷尔),但对氮气不可渗透(渗透率低于 5×10(-12)mol m(-2) s(-1) Pa(-1)的检测限,渗透率低于 1×10(-17)mol m(-1) s(-1) Pa(-1)的检测限=0.03 巴雷尔)。水蒸气的渗透率随沸石孔径的增大而增大(对于沸石 5A,所有其他参数不变,渗透率=12×10(-9)mol m(-2) s(-1) Pa(-1),渗透率=2.4×10(-14)mol m(-1) s(-1) Pa(-1)=72 巴雷尔)。这些观察结果表明,水分子主要通过沸石通道传输,同时阻止其他分子的通过。在制备状态下对氮气的不可渗透性表明,未被水堵塞的缺陷数量较少。此外,膜的复合性质导致脆性降低;膜可以在没有支撑结构的情况下手动处理,因此可能是分离技术的有前途的候选者。