Suppr超能文献

用于锂空气电池的离子通道排列气体阻隔膜。

Ion-channel aligned gas-blocking membrane for lithium-air batteries.

作者信息

Choi Wonsung, Kim Mokwon, Park Jung Ock, Kim Joon-Hee, Choi Kyunghwan, Kim Yong Su, Kim Tae Young, Ogata Ken, Im Dongmin, Doo Seok-Gwang, Hwang Yunil

机构信息

Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, 16678, Republic of Korea.

Samsung Research Institute of Japan (SRJ), Samsung Electronics, Osaka, 562-0036, Japan.

出版信息

Sci Rep. 2017 Sep 20;7(1):12037. doi: 10.1038/s41598-017-12207-8.

Abstract

Lithium-metal-based batteries, owing to the extremely high specific energy, have been attracting intense interests as post-Li-ion batteries. However, their main drawback is that consumption/de-activation of lithium metal can be accelerated when O or S used in the cathode crosses over to the metal, reducing the lifetime of the batteries. In use of ceramic solid state electrolyte (SSE) separator, despite the capability of gas blocking, thick and heavy plates (~0.3 mm) are necessitated to compensate its mechanical fragility, which ruin the high specific energy of the batteries. Here, we demonstrate fabrication of a new membrane made of micron-sized SSE particles as Li-ion channels embedded in polymer matrix, which enable both high Li-ion conduction and gas-impermeability. Bimodal surface-modification was used to control the energy of the particle/polymer interface, which consequently allowed channel formation via a simple one-step solution process. The practical cell with the new membrane provides a cell-specific energy of over 500 Wh kg, which is the highest values ever reported.

摘要

基于锂金属的电池,由于其极高的比能量,作为锂离子电池的下一代,一直备受关注。然而,其主要缺点是,当阴极中使用的氧或硫渗透到金属中时,锂金属的消耗/失活会加速,从而缩短电池的使用寿命。在使用陶瓷固态电解质(SSE)隔膜时,尽管它具有气体阻隔能力,但需要厚且重的板(约0.3毫米)来弥补其机械脆性,这会破坏电池的高比能量。在此,我们展示了一种由微米级SSE颗粒制成的新型膜的制备方法,这些颗粒作为锂离子通道嵌入聚合物基体中,既能实现高锂离子传导性又具有气体不渗透性。采用双峰表面改性来控制颗粒/聚合物界面的能量,从而通过简单的一步溶液法形成通道。具有这种新型膜的实用电池的比能量超过500 Wh/kg,这是迄今报道的最高值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9e4/5607305/8ee2b497d13d/41598_2017_12207_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验