Suppr超能文献

区分 RNA 聚合酶 III 转录终止的核心和全酶机制。

Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III.

机构信息

Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Mol Cell Biol. 2013 Apr;33(8):1571-81. doi: 10.1128/MCB.01733-12. Epub 2013 Feb 11.

Abstract

Transcription termination by RNA polymerase (Pol) III serves multiple purposes; it delimits interference with downstream genes, forms 3' oligo(U) binding sites for the posttranscriptional processing factor, La protein, and resets the polymerase complex for reinitiation. Although an interplay of several Pol III subunits is known to collectively control these activities, how they affect molecular function of the active center during termination is incompletely understood. We have approached this using immobilized Pol III-nucleic acid scaffolds to examine the two major components of termination, transcription pausing and RNA release. This allowed us to distinguish two mechanisms of termination by isolated Saccharomyces cerevisiae Pol III. A core mechanism can operate in the absence of C53/37 and C11 subunits but requires synthesis of 8 or more 3' U nucleotides, apparently reflecting inherent sensitivity to an oligo(rU·dA) hybrid that is the termination signal proper. The holoenzyme mechanism requires fewer U nucleotides but uses C53/37 and C11 to slow elongation and prevent terminator arrest. N-terminal truncation of C53 or point mutations that disable the cleavage activity of C11 impair their antiarrest activities. The data are consistent with a model in which C53, C37, and C11 activities are functionally integrated with the active center of Pol III during termination.

摘要

RNA 聚合酶(Pol)III 的转录终止具有多种功能;它限定了对下游基因的干扰,形成了 3'寡(U)结合位点,用于转录后加工因子 La 蛋白,并且重置了聚合酶复合物以重新起始。尽管已知几个 Pol III 亚基的相互作用可以共同控制这些活性,但它们如何影响终止过程中活性中心的分子功能尚不完全清楚。我们使用固定化的 Pol III-核酸支架来研究终止的两个主要组成部分,转录暂停和 RNA 释放。这使我们能够区分来自分离的酿酒酵母 Pol III 的两种终止机制。核心机制可以在没有 C53/37 和 C11 亚基的情况下运行,但需要合成 8 个或更多的 3' U 核苷酸,显然反映了对终止信号本身的寡(rU·dA)杂交的固有敏感性。全酶机制需要更少的 U 核苷酸,但使用 C53/37 和 C11 来减缓延伸并防止终止子捕获。C53 的 N 端截断或使 C11 的切割活性失活的点突变会损害它们的抗捕获活性。这些数据与以下模型一致,即在终止过程中,C53、C37 和 C11 的活性与 Pol III 的活性中心功能整合。

相似文献

1
Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III.
Mol Cell Biol. 2013 Apr;33(8):1571-81. doi: 10.1128/MCB.01733-12. Epub 2013 Feb 11.
2
A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation.
EMBO J. 2006 Jan 11;25(1):118-28. doi: 10.1038/sj.emboj.7600915. Epub 2005 Dec 15.
4
RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output.
Nucleic Acids Res. 2013 Jan 7;41(1):139-55. doi: 10.1093/nar/gks985. Epub 2012 Oct 23.
5
Point mutations in the Rpb9-homologous domain of Rpc11 that impair transcription termination by RNA polymerase III.
Nucleic Acids Res. 2011 Aug;39(14):6100-13. doi: 10.1093/nar/gkr182. Epub 2011 Mar 30.
6
Transcription termination by the eukaryotic RNA polymerase III.
Biochim Biophys Acta. 2013 Mar-Apr;1829(3-4):318-30. doi: 10.1016/j.bbagrm.2012.10.006. Epub 2012 Oct 23.
7
RNA polymerase III subunits C37/53 modulate rU:dA hybrid 3' end dynamics during transcription termination.
Nucleic Acids Res. 2019 Jan 10;47(1):310-327. doi: 10.1093/nar/gky1109.
8
The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening.
J Biol Chem. 2010 Jan 22;285(4):2695-706. doi: 10.1074/jbc.M109.074013. Epub 2009 Nov 24.
10
Functional dissection of RNA polymerase III termination using a peptide nucleic acid as a transcriptional roadblock.
J Biol Chem. 2004 May 14;279(20):20708-16. doi: 10.1074/jbc.M311295200. Epub 2004 Feb 17.

引用本文的文献

1
Mutational and biophysical analyses reveal a TFIIIC binding region in the TFIIF-related Rpc53 subunit of RNA polymerase III.
J Biol Chem. 2023 Jul;299(7):104859. doi: 10.1016/j.jbc.2023.104859. Epub 2023 May 23.
3
Evolution of the RNA Cleavage Subunit C11/RPC10, and Recycling by RNA Polymerase III.
J Cell Immunol. 2022;4(2):65-71. doi: 10.33696/immunology.4.133.
4
Structural insights into nuclear transcription by eukaryotic DNA-dependent RNA polymerases.
Nat Rev Mol Cell Biol. 2022 Sep;23(9):603-622. doi: 10.1038/s41580-022-00476-9. Epub 2022 May 3.
5
The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance.
Nucleic Acids Res. 2021 Dec 2;49(21):12017-12034. doi: 10.1093/nar/gkab1145.
8
Functional characterization of Polr3a hypomyelinating leukodystrophy mutations in the S. cerevisiae homolog, RPC160.
Gene. 2021 Feb 5;768:145259. doi: 10.1016/j.gene.2020.145259. Epub 2020 Oct 22.
9
The vault RNA of plays a role in the production of -spliced mRNA.
J Biol Chem. 2019 Oct 25;294(43):15559-15574. doi: 10.1074/jbc.RA119.008580. Epub 2019 Aug 22.
10
RNA polymerase III subunits C37/53 modulate rU:dA hybrid 3' end dynamics during transcription termination.
Nucleic Acids Res. 2019 Jan 10;47(1):310-327. doi: 10.1093/nar/gky1109.

本文引用的文献

1
Regulation of pol III transcription by nutrient and stress signaling pathways.
Biochim Biophys Acta. 2013 Mar-Apr;1829(3-4):361-75. doi: 10.1016/j.bbagrm.2012.11.001. Epub 2012 Nov 16.
2
Transcription termination by the eukaryotic RNA polymerase III.
Biochim Biophys Acta. 2013 Mar-Apr;1829(3-4):318-30. doi: 10.1016/j.bbagrm.2012.10.006. Epub 2012 Oct 23.
3
RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output.
Nucleic Acids Res. 2013 Jan 7;41(1):139-55. doi: 10.1093/nar/gks985. Epub 2012 Oct 23.
4
Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast.
Biochim Biophys Acta. 2013 Jan;1829(1):174-85. doi: 10.1016/j.bbagrm.2012.10.003. Epub 2012 Oct 17.
5
Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex.
Science. 2012 Aug 3;337(6094):599-602. doi: 10.1126/science.1221592. Epub 2012 Jul 5.
6
RNA polymerase backtracking in gene regulation and genome instability.
Cell. 2012 Jun 22;149(7):1438-45. doi: 10.1016/j.cell.2012.06.003.
7
The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes.
Nat Struct Mol Biol. 2011 Nov 13;18(12):1394-9. doi: 10.1038/nsmb.2164.
9
Unravelling the means to an end: RNA polymerase II transcription termination.
Nat Rev Mol Cell Biol. 2011 May;12(5):283-94. doi: 10.1038/nrm3098. Epub 2011 Apr 13.
10
Termination and antitermination: RNA polymerase runs a stop sign.
Nat Rev Microbiol. 2011 May;9(5):319-29. doi: 10.1038/nrmicro2560. Epub 2011 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验