Mishra Saurabh, Maraia Richard J
Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India.
Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA.
J Cell Immunol. 2022;4(2):65-71. doi: 10.33696/immunology.4.133.
Nuclear RNA polymerase (Pol) III synthesizes large amounts of tRNAs and other short non-coding (nc)RNAs by a unique process that involves a termination-associated reinitiation-recycling mechanism. In addition to its two largest of 17 subunits, which contribute to active center RNA-DNA binding and catalytic site, a smaller subunit of ~110 aa (yeast C11, human RPC10) monitors this site, can modify its activity, and is essential for reinitiation-recycling. Distinct, but relevant to human immunity is cytoplasmic (cyto-)Pol III that is a direct sensor of AT-rich viral DNA from which it synthesizes 5'-ppp-RNA signaling molecules that activate interferon (IFN) production. Mutations in genes encoding Pol III subunits cause severe anti-viral immunodeficiency although the mechanisms responsible for cyto-Pol III initiation on this AT-rich DNA are unknown. Cyto-Pol III has also been implicated in inducing IFN in response to cytosolic mitochondrial DNA in autoimmune dysfunction. A focus of this commentary is recent biochemical and genetics research that examined the roles of the individual domains of C11 in the Pol III termination-associated reinitiation-recycling process as well as more recent cryo-EM structural and accompanying analyses, that are considered in evolutionary and other biological contexts. The N-terminal domain (NTD) of C11/RPC10 anchors at the periphery of Pol III from which a highly conserved linker extends to the mobile C-terminal RNA cleavage domain that can reach into the active center and rescue arrested complexes. Biochemical data indicate separable activities for the NTD and CTD in the transcription cycle, whereas the NTD-Linker can confer the evolutionary unique Pol III termination-reinitiation-recycling activity. A model produced from single particle cryo-EM conformations indicates that the C11-Linker-CTD swings in and out of the active center coordinated with allosteric movements of the DNA-binding clamp by the largest subunit, coupling termination to reinitiation-recycling. These may be relevant to DNA loading by cyto-Pol III during immune signaling.
核RNA聚合酶(Pol)III通过一种独特的过程合成大量的tRNA和其他短非编码(nc)RNA,该过程涉及与终止相关的重新起始-循环机制。除了其17个亚基中最大的两个亚基(它们有助于活性中心的RNA-DNA结合和催化位点)外,一个约110个氨基酸的较小亚基(酵母中的C11,人类中的RPC10)监测该位点,可以改变其活性,并且对于重新起始-循环至关重要。与人类免疫相关但不同的是细胞质(cyto-)Pol III,它是富含AT的病毒DNA的直接传感器,从中合成激活干扰素(IFN)产生的5'-ppp-RNA信号分子。编码Pol III亚基的基因突变会导致严重的抗病毒免疫缺陷,尽管尚不清楚细胞质Pol III在这种富含AT的DNA上起始的机制。细胞质Pol III还与自身免疫功能障碍中响应细胞质线粒体DNA诱导IFN有关。本评论的一个重点是最近的生化和遗传学研究,这些研究考察了C11的各个结构域在Pol III终止相关的重新起始-循环过程中的作用,以及最近的冷冻电镜结构和伴随分析,这些分析在进化和其他生物学背景下进行了考虑。C11/RPC10的N端结构域(NTD)锚定在Pol III的外围,从那里一个高度保守的连接子延伸到可移动的C端RNA切割结构域,该结构域可以进入活性中心并拯救停滞的复合物。生化数据表明NTD和CTD在转录周期中具有可分离的活性,而NTD-连接子可以赋予进化上独特的Pol III终止-重新起始-循环活性。从单颗粒冷冻电镜构象产生的模型表明,C11-连接子-CTD与最大亚基的DNA结合钳的变构运动协调地进出活性中心,将终止与重新起始-循环耦合。这些可能与免疫信号传导过程中细胞质Pol III的DNA加载有关。