Suppr超能文献

I 类核糖核苷酸还原酶中二锰-酪氨酸自由基辅因子的组装机制:通过 Mn(III)Mn(IV)中间态进行超氧阴离子的酶促生成对于酪氨酸氧化是必需的。

Mechanism of assembly of the dimanganese-tyrosyl radical cofactor of class Ib ribonucleotide reductase: enzymatic generation of superoxide is required for tyrosine oxidation via a Mn(III)Mn(IV) intermediate.

机构信息

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

J Am Chem Soc. 2013 Mar 13;135(10):4027-39. doi: 10.1021/ja312457t. Epub 2013 Feb 27.

Abstract

Ribonucleotide reductases (RNRs) utilize radical chemistry to reduce nucleotides to deoxynucleotides in all organisms. In the class Ia and Ib RNRs, this reaction requires a stable tyrosyl radical (Y(•)) generated by oxidation of a reduced dinuclear metal cluster. The Fe(III)2-Y(•) cofactor in the NrdB subunit of the class Ia RNRs can be generated by self-assembly from Fe(II)2-NrdB, O2, and a reducing equivalent. By contrast, the structurally homologous class Ib enzymes require a Mn(III)2-Y(•) cofactor in their NrdF subunit. Mn(II)2-NrdF does not react with O2, but it binds the reduced form of a conserved flavodoxin-like protein, NrdIhq, which, in the presence of O2, reacts to form the Mn(III)2-Y(•) cofactor. Here we investigate the mechanism of assembly of the Mn(III)2-Y(•) cofactor in Bacillus subtilis NrdF. Cluster assembly from Mn(II)2-NrdF, NrdI(hq), and O2 has been studied by stopped flow absorption and rapid freeze quench EPR spectroscopies. The results support a mechanism in which NrdI(hq) reduces O2 to O2(•-) (40-48 s(-1), 0.6 mM O2), the O2(•-) channels to and reacts with Mn(II)2-NrdF to form a Mn(III)Mn(IV) intermediate (2.2 ± 0.4 s(-1)), and the Mn(III)Mn(IV) species oxidizes tyrosine to Y(•) (0.08-0.15 s(-1)). Controlled production of O2(•-) by NrdIhq during class Ib RNR cofactor assembly both circumvents the unreactivity of the Mn(II)2 cluster with O2 and satisfies the requirement for an "extra" reducing equivalent in Y(•) generation.

摘要

核糖核苷酸还原酶(RNRs)利用自由基化学将核苷酸还原为所有生物中的脱氧核苷酸。在 Ia 类和 Ib 类 RNRs 中,该反应需要通过氧化还原双核金属簇来产生稳定的酪氨酸自由基(Y(•))。Ia 类 RNRs 的 NrdB 亚基中的 Fe(III)2-Y(•)辅因子可以通过 Fe(II)2-NrdB、O2 和还原当量的自组装产生。相比之下,结构同源的 Ib 类酶在其 NrdF 亚基中需要 Mn(III)2-Y(•)辅因子。Mn(II)2-NrdF 与 O2 不反应,但它与保守的黄素蛋白样蛋白 NrdIhq 的还原形式结合,在 O2 的存在下,反应形成 Mn(III)2-Y(•)辅因子。在这里,我们研究了枯草芽孢杆菌 NrdF 中 Mn(III)2-Y(•)辅因子组装的机制。通过停流吸收和快速冷冻淬火 EPR 光谱研究了 Mn(II)2-NrdF、NrdI(hq)和 O2 之间的簇组装。结果支持了一种机制,其中 NrdI(hq)将 O2 还原为 O2(•-)(40-48 s(-1),0.6 mM O2),O2(•-)通道并与 Mn(II)2-NrdF 反应形成 Mn(III)Mn(IV)中间体(2.2 ± 0.4 s(-1)),Mn(III)Mn(IV)物种将酪氨酸氧化为 Y(•)(0.08-0.15 s(-1))。在 Ib 类 RNR 辅因子组装过程中,NrdIhq 可控地产生 O2(•-),既避免了 Mn(II)2 簇与 O2 的不反应性,又满足了 Y(•)生成中“额外”还原当量的要求。

相似文献

3
Bacillus subtilis class Ib ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme.
Biochemistry. 2011 Jun 28;50(25):5615-23. doi: 10.1021/bi200348q. Epub 2011 Jun 6.
4
Crystal structure of Bacillus cereus class Ib ribonucleotide reductase di-iron NrdF in complex with NrdI.
ACS Chem Biol. 2014 Feb 21;9(2):526-37. doi: 10.1021/cb400757h. Epub 2013 Dec 11.
6
The dimanganese(II) site of Bacillus subtilis class Ib ribonucleotide reductase.
Biochemistry. 2012 May 8;51(18):3861-71. doi: 10.1021/bi201925t. Epub 2012 Apr 25.
7
Structural basis for activation of class Ib ribonucleotide reductase.
Science. 2010 Sep 17;329(5998):1526-30. doi: 10.1126/science.1190187. Epub 2010 Aug 5.
8
NrdI, a flavodoxin involved in maintenance of the diferric-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14383-8. doi: 10.1073/pnas.0807348105. Epub 2008 Sep 17.
9
Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo.
Biochemistry. 2011 Mar 15;50(10):1672-81. doi: 10.1021/bi101881d. Epub 2011 Feb 15.
10
Semiquinone-induced maturation of Bacillus anthracis ribonucleotide reductase by a superoxide intermediate.
J Biol Chem. 2014 Nov 14;289(46):31940-31949. doi: 10.1074/jbc.M114.592535. Epub 2014 Sep 27.

引用本文的文献

1
Characterization of a second class Ie ribonucleotide reductase.
Commun Biol. 2025 Feb 22;8(1):281. doi: 10.1038/s42003-025-07565-3.
2
O Activation and Enzymatic C-H Bond Activation Mediated by a Dimanganese Cofactor.
J Am Chem Soc. 2025 Jan 15;147(2):2148-2157. doi: 10.1021/jacs.4c16271. Epub 2025 Jan 1.
3
Electron transfer in biological systems.
J Biol Inorg Chem. 2024 Dec;29(7-8):641-683. doi: 10.1007/s00775-024-02076-8. Epub 2024 Oct 18.
4
Structural insights into the initiation of free radical formation in the Class Ib ribonucleotide reductases in Mycobacteria.
Curr Res Struct Biol. 2024 Sep 18;8:100157. doi: 10.1016/j.crstbi.2024.100157. eCollection 2024.
5
The H-cluster of [FeFe] Hydrogenases: Its Enzymatic Synthesis and Parallel Inorganic Semisynthesis.
Acc Chem Res. 2024 Jul 16;57(14):1941-1950. doi: 10.1021/acs.accounts.4c00231. Epub 2024 Jun 27.
6
Class Ib Ribonucleotide Reductases: Activation of a Peroxido-MnMn to Generate a Reactive Oxo-MnMn Oxidant.
Inorg Chem. 2024 Jan 29;63(4):2194-2203. doi: 10.1021/acs.inorgchem.3c04163. Epub 2024 Jan 17.
7
Study and design of amino acid-based radical enzymes using unnatural amino acids.
RSC Chem Biol. 2023 May 18;4(6):431-446. doi: 10.1039/d2cb00250g. eCollection 2023 Jun 7.
8
Why is manganese so valuable to bacterial pathogens?
Front Cell Infect Microbiol. 2023 Feb 3;13:943390. doi: 10.3389/fcimb.2023.943390. eCollection 2023.
9
Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes.
Subcell Biochem. 2022;99:109-153. doi: 10.1007/978-3-031-00793-4_4.
10
Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of -aminobenzoate in .
Proc Natl Acad Sci U S A. 2022 Sep 27;119(39):e2210908119. doi: 10.1073/pnas.2210908119. Epub 2022 Sep 19.

本文引用的文献

1
The dimanganese(II) site of Bacillus subtilis class Ib ribonucleotide reductase.
Biochemistry. 2012 May 8;51(18):3861-71. doi: 10.1021/bi201925t. Epub 2012 Apr 25.
2
Oxygen activation in flavoprotein oxidases: the importance of being positive.
Biochemistry. 2012 Apr 3;51(13):2662-9. doi: 10.1021/bi300227d. Epub 2012 Mar 22.
5
NrdH-redoxin protein mediates high enzyme activity in manganese-reconstituted ribonucleotide reductase from Bacillus anthracis.
J Biol Chem. 2011 Sep 23;286(38):33053-60. doi: 10.1074/jbc.M111.278119. Epub 2011 Aug 6.
6
Bacillus subtilis class Ib ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme.
Biochemistry. 2011 Jun 28;50(25):5615-23. doi: 10.1021/bi200348q. Epub 2011 Jun 6.
7
Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo.
Annu Rev Biochem. 2011;80:733-67. doi: 10.1146/annurev-biochem-061408-095817.
8
Oxygen cleavage with manganese and iron in ribonucleotide reductase from Chlamydia trachomatis.
J Biol Inorg Chem. 2011 Apr;16(4):553-65. doi: 10.1007/s00775-011-0755-1. Epub 2011 Jan 22.
9
Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo.
Biochemistry. 2011 Mar 15;50(10):1672-81. doi: 10.1021/bi101881d. Epub 2011 Feb 15.
10
Impact of the N5-proximal Asn on the thermodynamic and kinetic stability of the semiquinone radical in photolyase.
J Biol Chem. 2011 Feb 11;286(6):4382-91. doi: 10.1074/jbc.M110.194696. Epub 2010 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验