Suppr超能文献

飞行时间和点响应建模在 PET 重建中的临床影响:病灶检测研究。

Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study.

机构信息

Molecular Imaging and Translational Research, University of Tennessee Medical Center, Knoxville, TN 37920, USA.

出版信息

Phys Med Biol. 2013 Mar 7;58(5):1465-78. doi: 10.1088/0031-9155/58/5/1465. Epub 2013 Feb 13.

Abstract

Time-of-flight (TOF) and point spread function (PSF) modeling have been shown to improve PET reconstructions, but the impact on physicians in the clinical setting has not been thoroughly investigated. A lesion detection and localization study was performed using simulated lesions in real patient images. Four reconstruction schemes were considered: ordinary Poisson OSEM (OP) alone and combined with TOF, PSF, and TOF + PSF. The images were presented to physicians experienced in reading PET images, and the performance of each was quantified using localization receiver operating characteristic. Numerical observers (non-prewhitening and Hotelling) were used to identify optimal reconstruction parameters, and observer SNR was compared to the performance of the physicians. The numerical models showed good agreement with human performance, and best performance was achieved by both when using TOF + PSF. These findings suggest a large potential benefit of TOF + PSF for oncology PET studies, especially in the detection of small, low-intensity, focal disease in larger patients.

摘要

飞行时间(TOF)和点扩散函数(PSF)建模已被证明可以改善 PET 重建,但它们对临床医生的影响尚未得到彻底研究。本研究使用真实患者图像中的模拟病变进行了病变检测和定位研究。考虑了四种重建方案:普通泊松有序子集期望最大化(OP)单独重建和结合 TOF、PSF 和 TOF+PSF 重建。将图像呈现给有阅读 PET 图像经验的医生,并使用定位接收者操作特性曲线量化每种方法的性能。使用数值观察者(非预白化和霍特林)来确定最佳重建参数,并将观察者信噪比与医生的性能进行比较。数值模型与人类表现具有很好的一致性,当使用 TOF+PSF 时,两者都能达到最佳性能。这些发现表明,TOF+PSF 对肿瘤学 PET 研究有很大的潜在益处,特别是在检测较大患者中较小、低强度、局灶性疾病方面。

相似文献

1
Clinical impact of time-of-flight and point response modeling in PET reconstructions: a lesion detection study.
Phys Med Biol. 2013 Mar 7;58(5):1465-78. doi: 10.1088/0031-9155/58/5/1465. Epub 2013 Feb 13.
3
Effect of varying number of OSEM subsets on PET lesion detectability.
J Nucl Med Technol. 2013 Dec;41(4):268-73. doi: 10.2967/jnmt.113.131904. Epub 2013 Nov 12.
4
Impact of time-of-flight on PET tumor detection.
J Nucl Med. 2009 Aug;50(8):1315-23. doi: 10.2967/jnumed.109.063016. Epub 2009 Jul 17.
6
Experimental comparison of lesion detectability for four fully-3D PET reconstruction schemes.
IEEE Trans Med Imaging. 2009 Apr;28(4):523-34. doi: 10.1109/TMI.2008.2006520. Epub 2008 Oct 3.
8
Brain PET imaging optimization with time of flight and point spread function modelling.
Phys Med. 2015 Dec;31(8):948-955. doi: 10.1016/j.ejmp.2015.07.001. Epub 2015 Aug 4.
9
Harmonizing FDG PET quantification while maintaining optimal lesion detection: prospective multicentre validation in 517 oncology patients.
Eur J Nucl Med Mol Imaging. 2015 Dec;42(13):2072-82. doi: 10.1007/s00259-015-3128-0. Epub 2015 Jul 30.
10
Applications of both time of flight and point spread function in brain PET image reconstruction.
Nucl Med Commun. 2016 Apr;37(4):422-7. doi: 10.1097/MNM.0000000000000459.

引用本文的文献

1
Deep learning-based time-of-flight (ToF) enhancement of non-ToF PET scans for different radiotracers.
Eur J Nucl Med Mol Imaging. 2025 Feb 18. doi: 10.1007/s00259-025-07119-z.
3
Deep learning-based time-of-flight (ToF) image enhancement of non-ToF PET scans.
Eur J Nucl Med Mol Imaging. 2022 Sep;49(11):3740-3749. doi: 10.1007/s00259-022-05824-7. Epub 2022 May 4.
4
Influences on PET Quantification and Interpretation.
Diagnostics (Basel). 2022 Feb 10;12(2):451. doi: 10.3390/diagnostics12020451.
8
Pitfalls on PET/CT Due to Artifacts and Instrumentation.
Semin Nucl Med. 2021 Nov;51(6):646-656. doi: 10.1053/j.semnuclmed.2021.06.015. Epub 2021 Jul 7.
9
New PET technologies - embracing progress and pushing the limits.
Eur J Nucl Med Mol Imaging. 2021 Aug;48(9):2711-2726. doi: 10.1007/s00259-021-05390-4. Epub 2021 Jun 3.
10
Moving the goalposts while scoring-the dilemma posed by new PET technologies.
Eur J Nucl Med Mol Imaging. 2021 Aug;48(9):2696-2710. doi: 10.1007/s00259-021-05403-2. Epub 2021 May 14.

本文引用的文献

1
Effect of Scan Time on Oncologic Lesion Detection in Whole-Body PET.
IEEE Trans Nucl Sci. 2012 Oct;59(5):1940-1947. doi: 10.1109/TNS.2012.2197414.
2
Impact of time-of-flight PET on whole-body oncologic studies: a human observer lesion detection and localization study.
J Nucl Med. 2011 May;52(5):712-9. doi: 10.2967/jnumed.110.086678. Epub 2011 Apr 15.
3
Improvement in lesion detection with whole-body oncologic time-of-flight PET.
J Nucl Med. 2011 Mar;52(3):347-53. doi: 10.2967/jnumed.110.080382. Epub 2011 Feb 14.
4
Bias in iterative reconstruction of low-statistics PET data: benefits of a resolution model.
Phys Med Biol. 2011 Feb 21;56(4):931-49. doi: 10.1088/0031-9155/56/4/004. Epub 2011 Jan 20.
5
Evaluation of Noise Properties in PSF-Based PET Image Reconstruction.
IEEE Nucl Sci Symp Conf Rec (1997). 2009 Oct 24;2009(2009):3042-3047. doi: 10.1109/nssmic.2009.5401574.
6
Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation.
Phys Med Biol. 2010 Mar 7;55(5):1453-73. doi: 10.1088/0031-9155/55/5/013. Epub 2010 Feb 11.
7
An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging.
J Nucl Med. 2010 Feb;51(2):237-45. doi: 10.2967/jnumed.109.068098. Epub 2010 Jan 15.
8
Impact of time-of-flight on PET tumor detection.
J Nucl Med. 2009 Aug;50(8):1315-23. doi: 10.2967/jnumed.109.063016. Epub 2009 Jul 17.
9
Experimental evaluation of a simple lesion detection task with time-of-flight PET.
Phys Med Biol. 2009 Jan 21;54(2):373-84. doi: 10.1088/0031-9155/54/2/013. Epub 2008 Dec 19.
10
Evaluation of Multiclass Model Observers in PET LROC Studies.
IEEE Trans Nucl Sci. 2007;54:116-123. doi: 10.1109/TNS.2006.889163.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验