Department of Pediatrics.
JAMA Pediatr. 2013 Jan;167(1):47-54. doi: 10.1001/jamapediatrics.2013.418.
To examine whether high performance on one measure of quality is associated with high performance on others and to develop a data-driven explanatory model of neonatal intensive care unit (NICU) performance.
We conducted a cross-sectional data analysis of a statewide perinatal care database. Risk-adjusted NICU ranks were computed for each of 8 measures of quality selected based on expert input. Correlations across measures were tested using the Pearson correlation coefficient. Exploratory factor analysis was used to determine whether underlying factors were driving the correlations.
Twenty-two regional NICUs in California.
In total, 5445 very low-birth-weight infants cared for between January 1, 2004, and December 31, 2007.
Pneumothorax, growth velocity, health care-associated infection, antenatal corticosteroid use, hypothermia during the first hour of life, chronic lung disease, mortality in the NICU, and discharge on any human breast milk.
The NICUs varied substantially in their clinical performance across measures of quality. Of 28 unit-level correlations, 6 were significant (ρ < .05). Correlations between pairs of measures of quality of care were strong (ρ ≥ .5) for 1 pair, moderate (range, ρ ≥ .3 to ρ < .5) for 8 pairs, weak (range, ρ ≥ .1 to ρ < .3) for 5 pairs, and negligible (ρ < .1) for 14 pairs. Exploratory factor analysis revealed 4 underlying factors of quality in this sample. Pneumothorax, mortality in the NICU, and antenatal corticosteroid use loaded on factor 1; growth velocity and health care-associated infection loaded on factor 2; chronic lung disease loaded on factor 3; and discharge on any human breast milk loaded on factor 4.
In this sample, the ability of individual measures of quality to explain overall quality of neonatal intensive care was modest.
考察在某一质量衡量标准上的优异表现是否与其他衡量标准上的优异表现相关,并建立一个以数据为驱动的新生儿重症监护病房(NICU)绩效解释模型。
我们对全州围产期护理数据库进行了一项横断面数据分析。根据专家意见,选择了 8 项质量衡量标准,为每个标准计算了风险调整后的 NICU 排名。使用 Pearson 相关系数检验各衡量标准之间的相关性。采用探索性因子分析确定是否有潜在因素驱动相关性。
加利福尼亚州的 22 个区域 NICU。
共纳入 2004 年 1 月 1 日至 2007 年 12 月 31 日期间接受治疗的 5445 名极低出生体重儿。
气胸、生长速度、医源性感染、产前使用皮质类固醇、生后 1 小时内体温过低、慢性肺病、NICU 死亡率和任何人类母乳出院。
NICU 在质量衡量标准上的临床表现存在显著差异。在 28 个单位水平相关性中,有 6 个具有统计学意义(ρ<0.05)。质量护理衡量标准之间的相关性很强(ρ≥0.5)有 1 对,中度(范围为ρ≥0.3 至 ρ<0.5)有 8 对,弱(范围为ρ≥0.1 至 ρ<0.3)有 5 对,无统计学意义(ρ<0.1)有 14 对。探索性因子分析显示,该样本中有 4 个质量潜在因素。气胸、NICU 死亡率和产前使用皮质类固醇与第 1 个因子相关;生长速度和医源性感染与第 2 个因子相关;慢性肺病与第 3 个因子相关;任何人类母乳出院与第 4 个因子相关。
在该样本中,个别质量衡量标准解释新生儿重症监护整体质量的能力有限。