利用离心力分离和回收循环肿瘤细胞。
Isolation and retrieval of circulating tumor cells using centrifugal forces.
机构信息
Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
出版信息
Sci Rep. 2013;3:1259. doi: 10.1038/srep01259. Epub 2013 Feb 12.
Presence and frequency of rare circulating tumor cells (CTCs) in bloodstreams of cancer patients are pivotal to early cancer detection and treatment monitoring. Here, we use a spiral microchannel with inherent centrifugal forces for continuous, size-based separation of CTCs from blood (Dean Flow Fractionation (DFF)) which facilitates easy coupling with conventional downstream biological assays. Device performance was optimized using cancer cell lines (> 85% recovery), followed by clinical validation with positive CTCs enumeration in all samples from patients with metastatic lung cancer (n = 20; 5-88 CTCs per mL). The presence of CD133⁺ cells, a phenotypic marker characteristic of stem-like behavior in lung cancer cells was also identified in the isolated subpopulation of CTCs. The spiral biochip identifies and addresses key challenges of the next generation CTCs isolation assay including antibody independent isolation, high sensitivity and throughput (3 mL/hr); and single-step retrieval of viable CTCs.
在癌症患者的血液中存在罕见的循环肿瘤细胞 (CTCs) 及其出现的频率对于早期癌症检测和治疗监测至关重要。在这里,我们使用具有固有离心力的螺旋微通道来连续、基于大小的从血液中分离 CTC(Dean 流分离 (DFF)),这便于与常规下游生物检测轻松结合。使用癌细胞系对设备性能进行了优化(>85%的回收率),然后对转移性肺癌患者的所有样本进行了临床验证(n=20;每毫升 5-88 个 CTCs)。还在分离的 CTC 亚群中鉴定到了 CD133+细胞,这是肺癌细胞中具有干细胞样行为的表型标志物。螺旋生物芯片确定并解决了下一代 CTC 分离检测的关键挑战,包括非抗体依赖的分离、高灵敏度和高通量(3 毫升/小时);以及可存活 CTC 的单步检索。