文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种新颖的基于大小的离心微流控设计,通过生物相容性的磁铁矿-精氨酸纳米颗粒从血液中富集和磁分离循环肿瘤细胞。

A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles.

机构信息

Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada.

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.

出版信息

Sensors (Basel). 2024 Sep 18;24(18):6031. doi: 10.3390/s24186031.


DOI:10.3390/s24186031
PMID:39338775
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11436177/
Abstract

This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, and therapy. CTCs are cells that break away from primary tumors and travel through the bloodstream; however, isolating CTCs from blood cells is difficult due to their low numbers and diverse characteristics. The proposed microfluidic device consists of two sections: a passive section that uses inertial force and bifurcation law to sort CTCs into different streamlines based on size and shape and an active section that uses magnetic forces along with Dean drag, inertial, and centrifugal forces to capture magnetized CTCs at the downstream of the microchannel. The authors designed, simulated, fabricated, and tested the device with cultured cancer cells and human cells. We also proposed a cost-effective method to mitigate the surface roughness and smooth surfaces created by micromachines and a unique pulsatile technique for flow control to improve separation efficiency. The possibility of a device with fewer layers to improve the leaks and alignment concerns was also demonstrated. The fabricated device could quickly handle a large volume of samples and achieve a high separation efficiency (93%) of CTCs at an optimal angular velocity. The paper shows the feasibility and potential of the proposed centrifugal microfluidic approach to satisfy the pumping, cell sorting, and separating functions for CTC separation.

摘要

本文提出了一种新颖的离心微流控方法(所谓的 CD 上实验室),根据物理和获得的化学性质,从其他健康细胞中分离出磁性循环肿瘤细胞(CTC)。这项研究提高了 CTC 分离的效率,这对癌症的诊断、预后和治疗至关重要。CTC 是从原发性肿瘤中分离出来并通过血液传播的细胞;然而,由于其数量少且特征多样,从血液细胞中分离 CTC 非常困难。所提出的微流控装置由两部分组成:被动部分,利用惯性力和分叉定律根据大小和形状将 CTC 分离到不同的流线中;主动部分,利用磁力以及 Dean 拖曳力、惯性力和离心力,在微通道的下游捕获磁化的 CTC。作者设计、模拟、制造和测试了该装置,该装置使用了培养的癌细胞和人类细胞。我们还提出了一种经济有效的方法来减轻微机械产生的表面粗糙度和表面光滑度,并采用独特的脉动技术来控制流量,以提高分离效率。还展示了使用更少层的设备来改善泄漏和对准问题的可能性。所制造的设备可以快速处理大量样本,并在最佳角速度下实现 93%的高 CTC 分离效率。本文展示了所提出的离心微流控方法的可行性和潜力,以满足 CTC 分离的泵送、细胞分选和分离功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/f9aa3fb7ce5b/sensors-24-06031-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/03b7a72a9a2f/sensors-24-06031-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/16a285997f4c/sensors-24-06031-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/34828f1d699e/sensors-24-06031-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/f440e049ccb4/sensors-24-06031-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/4ef37c07bc0e/sensors-24-06031-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/9fe4c5ba5a13/sensors-24-06031-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/3e1ec059b2c2/sensors-24-06031-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/52be629629b7/sensors-24-06031-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/41e582e5b182/sensors-24-06031-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/42dfe92d9d87/sensors-24-06031-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/f9aa3fb7ce5b/sensors-24-06031-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/03b7a72a9a2f/sensors-24-06031-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/16a285997f4c/sensors-24-06031-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/34828f1d699e/sensors-24-06031-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/f440e049ccb4/sensors-24-06031-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/4ef37c07bc0e/sensors-24-06031-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/9fe4c5ba5a13/sensors-24-06031-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/3e1ec059b2c2/sensors-24-06031-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/52be629629b7/sensors-24-06031-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/41e582e5b182/sensors-24-06031-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/42dfe92d9d87/sensors-24-06031-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ce/11436177/f9aa3fb7ce5b/sensors-24-06031-g011.jpg

相似文献

[1]
A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles.

Sensors (Basel). 2024-9-18

[2]
An experimental study of centrifugal microfluidic platforms for magnetic-inertial separation of circulating tumor cells using contraction-expansion and zigzag arrays.

J Chromatogr A. 2023-9-13

[3]
Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells.

Sci Rep. 2022-10-11

[4]
Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review.

Sensors (Basel). 2023-6-2

[5]
Design and Application of Microfluidic Capture Device for Physical-Magnetic Isolation of MCF-7 Circulating Tumor Cells.

Biosensors (Basel). 2024-6-15

[6]
All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity.

Anal Chem. 2014-10-30

[7]
Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics.

BMC Cancer. 2016-8-8

[8]
High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel.

Anal Chem. 2018-3-20

[9]
Isolation and retrieval of circulating tumor cells using centrifugal forces.

Sci Rep. 2013-2-12

[10]
Label-free ferrohydrodynamic cell separation of circulating tumor cells.

Lab Chip. 2017-9-12

引用本文的文献

[1]
Design and Performance Analysis of Spiral Microchannels for Efficient Particle Separation Using Inertial Microfluidics.

Micromachines (Basel). 2025-3-19

本文引用的文献

[1]
Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review.

Sensors (Basel). 2023-6-2

[2]
Detection of circulating tumor cells: opportunities and challenges.

Biomark Res. 2022-8-13

[3]
Targeted Osmotic Lysis: A Novel Approach to Targeted Cancer Therapies.

Biomedicines. 2022-4-2

[4]
Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells.

Biosensors (Basel). 2022-4-7

[5]
Separation of circulating tumor cells from blood using dielectrophoretic DLD manipulation.

Biomed Microdevices. 2021-9-28

[6]
Morphological features of breast cancer circulating tumor cells in blood after physical and biological type of isolation.

Radiol Oncol. 2021-8-10

[7]
Detection of Epithelial Cell Adhesion Molecule in Feline Normal and Tumor Cell Lines and Tissues With Selected Commercial Anti-human EpCAM Antibodies.

Front Vet Sci. 2021-2-4

[8]
Microfluidic detection of human diseases: From liquid biopsy to COVID-19 diagnosis.

J Biomech. 2021-3-5

[9]
Design and Clinical Application of an Integrated Microfluidic Device for Circulating Tumor Cells Isolation and Single-Cell Analysis.

Micromachines (Basel). 2021-1-2

[10]
Magnetic Particles for CTC Enrichment.

Cancers (Basel). 2020-11-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索